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1 Observing the spectral radiance of the sky: sens-
ing impact

1.1 Characterisation of a celestial radiation field: radiometric
definitions

dA,

dA

Figure 1: geometry for defining intensity(radiance).

The spectral radiance or monochromatic intensity is the basic quantity to describe a ra-
diation field. It is defined as the amount of radiant energy per unit time, per unit area
perpendicular to the beam, per unit solid angle, per unit wavelength (or frequency, en-
ergy). The relevant geometry is displayed in figure 1, the spectral radiance is expressed

as: IE
IO ) = —— (1)
ii - Q dQ dt d\ dA

The monochromatic radiation fluz density or spectral irradiance F'()\,t) is derived by

integrating I(\, Q, t) over the solid angle:

dE — —_
FOLt) = —%  — /I)\Qt 7. G do

2w
0

The total irradiance F(t) is subsequently obtained by integrating over all wavelengths.
The spectral(monochromatic) radiant fluz is the total amount of monochromatic radiant

/ I(\, 0, 6,1) cos sind df do 2)
0
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energy that is transported through a given area per unit time interval:
B\, 1) / / (A, 0) -G dQ dA 3
( dt d)\ (3)

Finally, the radiant flux represents the total amount of radiant energy that is trans-
ported through a given area, integrated over all wavelengths, per unit time:

:///I,\(Q,t)ﬁ-ﬁdeAd)\ (4)

For an isotropic radiation field from the upper hemisphere, e.g. an isotropically dis-
tributed sky background, the following relation holds:

F(\t) =7I(\ Q1) (5)

and for a point source at position QO with spectral radiance S,(\,t) the spectral irra-
diance is:

FOLE) = /Sp()\,t) 5(3 — Gy) - 3 dO

Q
Sp(\ 1) - Qg = S,p(A, 1) cosby (6)
= Sp(A,t)  for normal incidence (7)

The spectral radiance I, which characterizes the radiation beam, has intrinsic statistical
fluctuations. As a consequence, an astronomical measurement has to be treated as a
stochastic process.

1.2 The sensing process: filtering of a stochastic signal

In observational astrophysics, the system response to an incoming radiation field can
be characterised by filtering, arising from the individual elements making up the tele-
scope configuration, of a stochastic process described by the monochromatic intensity
I(v, Q, t). Generally, the time dependent output of the telescope is described by

X(t) =S+ N(?) (8)

in which S(t) represents the outcome of the filtering of the signal source and N(t) repre-
sents the sum of all (filtered) noise components like background radiation, disturbances
arising from the operational environment and intrinsic noise in the detection system,
like dark current. The measuring process of the source signal S(t) can be symbolically
written as a series of consecutive convolutions, defined by the angular and the spectral
response functions of the observational instrument:

S(t) = / R(v) * / (1S, v,1)  P(3,0)] 43| dv (9)

Av AQrov



P(Q, v) represents the collecting power of the telescope. which depends in general
on the frequency (or wavelength, or energy). It is a function of the telescope off-axis
angle in the field of view Qrov and contains the point spread function H(Q, v), which
quantitatively describes the angular resolution (field position dependent). AQ FoOV gives
the solid angle over which the convolution I($, v, t) * P($, v) is to be integrated. The
choice of AQpoy entirely depends on the number of image elements in the field of view,
which may be as large as 10® in modern systems, and on the objective of the particular
observation (e.g. ultimate angular resolution or high quality spectrum over a relatively
large part of the field of view). Accordingly the integral can be done over the whole
field of view QFOV, which may cover a large part of the sky in the case of wide-field
cameras, or it may be done over just one image pixel. The integration of the signal
after the second convolution with R(v) covers the spectral range of interest Av, which
is part of the total bandwidth v. Again, this may vary from a very narrow range (e.g.
measuring the line profile of a single spectral line) to a very broad range (in case of
photometry). The number of frequency elements can therefore range from 1 (e.g. in the
case of a bolometric detector) to approximately 10° in a high-resolution spectrograph.
It is important to remember continually that the term frequency covers here three types
of Fourier pairs.Every measurement or observation implies bandwidth limitations on
each of these frequencies.

e The pair I(t) < I(f) refers to time resolution, the frequency f relates to temporal
frequency.

e The pair 1($) < I(C) refers to spatial resolution, the frequency ¢ in the Fourier
domain has to be interpreted as spatial frequency. This refers to structures in the
image contrast.

e The pair I(v) < I(s) refers to spectral resolution, in this case s is a Fourier
frequency which relates to a spectral frequency. A spectrum containing a large
number of sharp features, like narrow emission and absorption lines, possesses
much power in high spectral frequencies; a featureless continuum contains only
low spectral frequencies.

The normalised value of the Fourier transform of a particular instrument response

—

function, e.g. R(s) or H((), is called the Modulation Transfer Function (MTF) and
describes the frequency dependent filtering of the source signal in the Fourier domain.
The MTF refers either to the amplitude/phase transfer function of the signal or to the
power transfer function, in practice this will be explicitly clear from the specific context
in which the MTF is employed.

1.3 Observation filtering

The sensing (observation) process inevitably filters the sky image in at least three
different ways:

e Through the finite exposure length, which leads to a finite number of photons inci-
dent during the measurement time. Consequently we always deal with a sample of



the parent distribution representing the true image. This introduces measurement
noise and leads to an imperfect restitution of 1(€2, \, ¢), relative to a measurement
with infinite signal-to-noise ratio.

e Through the finite size of the telesope or antenna apertures, that imposes a funda-
mental restriction on the attainable image quality due to diffraction. In addition,
the focussing properties and the imperfections in the realisation of the optical
surfaces lead to geometrical aberrations that may become dominant over the fun-
damental restrictions imposed by diffraction.

e Through the radiation beam crossing the Earth’s heterogeneous and turbulent
atmosphere. This filtering applies of course solely to ground based observatories,
in modern telescope systems this can partly be compensated for by employing
adaptive optics.

In the following sections we shall treat in some detail the effects on image formation
arising from diffraction, geometrical aberration and atmospheric ”seeing”.

At wavelengths shorter than ~ 0.1 nanometer, the application of focussing optics be-
comes untenable due to extremely low reflection efficiencies of the optical surfaces.
Imaging can still be accomplished by employing beam modulation techniques (e.g.
coded mask telescopes) and, at gamma-ray wavelengths, by exploiting the directionality
properties of the photon interaction processes. In the latter case, the optical element
and the detection system have become one and the same device. A discussion of these
techniques is presented in section 9 of this booklet and is elaborated with reference to
recently operated space observatories.

10



2 Time filtering

2.1 Finite exposure and time resolution

In practice, the measurement or registration of a stochastic process always takes place
over a finite period T and with a certain resolution AT, i.e. the minimum time bin for
a data point. The limitation in measuring time 7" corresponds to a multiplication in
the time domain of a stochastic variable X (¢) with a window (block) function II1(¢/T).
This function is described as follows,

t 1
IImi=) =1 f < =T 1
<T> or =3 (10)
n<i> =0 for |f|><T (11)
T o 2
(12)

Consequently a new, time filtered, stochastic variable Y'(¢) is introduced:

t

Y(f) =TI (T) X(#) (13)

The limitation in time resolution always arises in practice due to the frequency-limited
transmission characteristic of any physical measuring device.

Suppose, as an example, the measurement is taken at time ¢ within the measuring
period T" with a temporal resolution AT. This corresponds to an integration of the
stochastic variable Y'(t) between ¢t — AT /2 and t + AT/2, divided by AT (a so called
running average). It follows that

t+AT/2

Z() = Yar(t) AT / AT/ (t_t’> Y (t')dt (14)

t—AT/2

This equation can also be expressed in terms of a convolution in the time domain:

1 t 1 t t
Z(t) = —=II xY(t) = —=II 11 =) X(¢t 1
0= () vo- () (@ o
which represents a low-frequency (or ‘low-pass’) filtering of the stochastic variable Y'(¢).
The values pir and Ry (7) for an ergodic process obtained from a finite measuring period
T will therefore slightly differ from the true values p and R(7). The error introduced

by measuring the sample average pr rather than the true average pu is the subject of
the next paragraph.

2.2 Error in a sample average

We wish to determine the accuracy with which the approximate value pr approaches
the real value p. An illustration of this is given in Figure 2. To do so we start by noting
that determining the average corresponds to convolution in the time domain with a
block function. We denote this

X(t) —

(L) | Xr (16)

Nf=
Sl
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Figure 2: Illustration of the errors in average and power spectrum of a stochastic process
x(t). a) a realization of the process b) filtered with a low-pass filter (high frequencies are
removed): y(t) c¢) measurement during finite time interval T, and the average during
this interval (dashed line, value yr) d) the autocorrelation functions of the process R, (T)
and of the measurment R,(T). Figure taken from Lena et al 1998.
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In terms of the Fourier transforms, the averaging corresponds to a multiplication with
a sinc-function. In general, we write the effect of the measuring apparatus on the signal
in the Fourier domain as Y(f) = X(f)H(f) and hence Y*(f) = X*(f)H*(f), and
with H(f) the transfer function. We can thus also write |Y(f)]? = |X(f)*|H(f)|*
Note: in the literature the term transfer function is used both for H(f), i.e. the signal
transfer function, but also for |[H(f)|?, i.e. the power transfer function. So be prepared
for the correct interpretation whenever you encounter the term transfer function in the
literature! With this we take the Fourier transform of the autocorrelation, to find:

Sxr (f) = [H(f)[*Sx(f) = sinc®(Tf) - Sxp(f) (17)

Transforming back to the time domain, we write this as
Rx, (1) = h(7) x h(T) * Rx) (18)

and note that h = (1/T)II(¢/T) is a real function. We note that the convolution of a
block with itself is a triangle, and introduce the notation:

h(r) * h(r) = p(r) = %A (%)

to rewrite Eq. 18 as

Ry (r) = %A (%) = Z ( > (7 — )dr’ (19)

For convenience we consider the case where =0, i.e. R = C', and find

Cxe(7) = = / ( > (7 — )7’ (20)

To compute the variance we set 7 = 0 and find

Cxe0) = lox, ' = / (7)c t><—f'>dr'=%_ZA (7) exatrar 2

where we have used the fact that C' is even. Explicitly writing A we finally obtain

el = / ( ) exurar 2

Two things are to be noted in this equation. First: the integral ranges from —7 to
+T, i.e. over a range with length 27°, but nonetheless the normalization factor is 1/7.
Second, the autocovariance is always limited in the frequency domain.

As an example we consider a specific form for the transfer function, viz.:

1

HD =i,

(23)

13



At small frequencies f < 1/(277,) = f, the transfer is complete, i.e. |H(f)| =1, and at
high frequencies f > f, the transfer is inversely proportional to the temporal frequency,
i.e. |[H(f)| = fo/f. The frequency f, is the ‘cut-off’ frequency of the transfer function
H(J).

We will forego the full mathematics here, and merely conclude that the autocovariance
with such a system drops exponentially with (the absolute value of) the time difference

T:
1

o,
This means that at times 7 > 7, the correlation is virtually zero. By entering Eq. 24
into Eq. 22 and performing the integration, we get

Cx (1) = Cxq (0)e~Il/m where To (24)

2 2 E _ E _ *T/To
lox,]" =2 [UX(t)} T [1 T (1 ¢ )} (25)
To get a feeling for the meaning of this equation we consider two limiting cases. First
the one in which the duration of the measurement largely exceeds the correlation time,
T > 7,. Eq. 25 then becomes

x|
o2 =2 o) =2 = L0

T 7 fo T (26)

and we see that the variance of the measured signal is proportional to the variance of
the incoming signal, and approximates zero when the duration of the measurement goes
to infinity, and also when the number of frequencies over which one measures goes to
infinity. The measured signal is then said to be ergodic in the mean. The last limit can
be understood by noting that f,7" is the number of cycles during 7" with a frequency
fo, 1.€. it gives the number of measurements; Eq. 26 thus is analogous to the equation
which gives the variance of the average o7, = 0*/N.

The other limit we consider is the one for which the duration of the measurement equals
the correlation time, 7' = 7,. Eq. 25 in this limit becomes

UXT2 = 20X(t)2€71 ~ O'X(t)2 (27)

This is also understandable in terms of determining the average, in the case where just
one measurement is taken: N = 1. The moral we can draw from this example is that
one must take good care that the duration of the measurement is much longer than
the correlation time, T' > 7,, if one wishes to avoid [arge errors in the estimates of the
average and of the variance. Another moral is that we must take into account the errors
in the average and in the variance whenever we are looking for really small effects.
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3 Spatial filtering

3.1 Diffraction by a single aperture
3.1.1 The Huygens-Fresnel principle

Consider a point source S at great distance compared to the size of the aperture of an
observing telescope, a condition that is mostly satisfied in observational astrophysics.
The EM-wave incident on the telescope aperture can hence be described by a plane
wave. Propagation of this plane wave beyond the aperture opening is then governed by
the Huygens-Fresnel principle. This principle states that every unobstructed point of a
wavefront, at a given instant in time, serves as a source of secondary wavelets with the
same frequency as that of the primary wave. The amplitude of the radiation field at any
point beyond, is the superposition of all these wavelets considering their amplitudes
and relative phases.

3.1.2 Fresnel and Fraunhofer diffraction

\\\\P
| \\\\\
s>l/>t>> % X}}{\{\H'{‘u‘
| . /////////

Figure 3: Fraunhofer diffraction. Figure taken from Hecht 1987.

Now imagine the aperture of the telescope as an opening in an opaque screen and
consider a plane of observation very close behind this aperture. Under these conditions a
clear and sharp image of the aperture is recognizable, despite some light fringing around
its periphery (keep in mind that the idealized geometric aperture image corresponds
to A — 0). If the plane of observation is moved further away from the aperture,
the radiation starts to diverge and the image of the aperture becomes increasingly
more structured as fringes become more prominent. This is known as Fresnel or
near field diffraction. If the plane of observation is gradually moved out further,

16



the fringes continually change, the projected pattern is now spread out considerably
and bears almost no resemblance anymore to the actual aperture. Still further out,
only the size of the pattern changes and not its shape. The radiation now propagates
in spherical expansion. If R is the distance from the aperture, the wave amplitudes
decrease proportional to R and the radiation power with R2, in contrast to the plane
wave incident on the aperture opening. In this region we have the Fraunhofer or
far field limit for diffraction, which holds for the great majority of observations in
astronomy. Putting it differently: taking a point source S and a point of observation
P, both very far from the aperture opening, Fraunhofer diffraction applies as long as
the incoming and outgoing (in a conical fashion) wavefronts approach being planar (i.e.
differing therefrom by a small fraction of a wavelength over the extent of the diffracting
aperture or obstacle).

Figure 3 shows the planar wave situation applicable to Fraunhofer diffraction, two lenses
(L1, Ly) have been inserted to reposition the radiation source S and the observation
position P from infinity to a finite and physically feasible location.

A more quantitative way to appreciate this is that in the superposition of all wavelets
at the observation point P (application of the Huygens-Fresnel principle defined above)
the phase of each contributing wavelet at P, due to the differences in path traversed, is
crucial to the determination of the resultant field amplitude in P. Now if the wavefronts
impinging on and emerging from the aperture are planar, these path differences will
be describable by a linear function of the two geometric aperture variables, say a 2-
dimensional position vector 7. This linearity in the aperture variables of the wavelet’s
phase differences is the explicit mathematical criterion for the prevalence of Fraunhofer
diffraction!

3.1.3 Point Spread Function (PSF) and Optical Tranfer Function (OTF)
in the Fraunhofer limit

Consider the primary mirror, lens or radio dish of a telescope viewing the sky. The
plane through the rim of the primary mirror (dish) is defined as the aperture or pupil
plane. A position in this pupil plane can be specified by a 2-dimensional position vector
7. The position of a celestial source in the sky field being observed can be specified
by a unit direction vector Q(Qw, Q,,€,), its components represent the direction cosines
relative to a Cartesian coordinate system with its origin at the centre of the mirror.
The z-axis is chosen perpendicular to the pupil plane and the y and z axes are located
in the pupil plane, see figure 4. Obviously Q2 + Q2 + Q2 = 1 should hold, so if Q, and
2, are given €2, is fixed apart from its sign. However the radiation is incident from the
upper hemisphere, hence we have €2, > 0. Consequently a source position in the sky
can be described by a 2-dimensional rather than a 3-dimensional vector Q(Hy, 6.). The
angular components 0, and ¢, refer to two orthogonal angular coordinate axes across
the sky field under observation, they are related to the direction cosines of O through
sinf, = €,/(1-Q2)% and sin 0, = QZ/(l—Qz)%. In observational astronomy a particular
sky field under observation is practically always strictly limited in angular size (< square
degree). Therefore, in good approximation, we can assume that 6, ~ sinf, ~ (, and
0, ~sinf, ~ (,.

17
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Figure 4: Camera Obscura: sky and image coordinates in the Fraunhofer limit.

To stipulate the essence of Fraunhofer diffraction, we reduce the telescope primary
mirror to a single pupil in the yz-plane. If we consider the image plane to be spherical
at a very large distance R — oo from the pupil plane, a celestial point source at sky

=

coordinates y(0y,,0.,) will produce a geometrical image located at —0o(0 v 0%) =

—QO(—HyO, —0,,) in the image plane. In this approach the telescope has been reduced to
a Camera Obscura. This has fundamentally no impact on our analysis, since in reality
the actual telescope mirror only serves to retrieve the point source image at R = oo
to a practical distance: the focal length of the telescope. As a consequence of the
diffraction by the pupil, the image of the celestial point source will not be limited to
the direction (3 of the geometrical image, but will also be blurred around this direction.
(Interalia: we can omit the minus sign by simply reversing the pointing direction of

18



distant point source

undisturbed plane wavefront

A

r

pupil plane m——

r

5
unit direction vector Q

parallel rays: Fraunhofer
"far fie_l)d_')' approximation
R'=R+Q-r

R — oo, distant image plane

Figure 5: Geometry for diffraction by the telescope pupil in the Fraunhofer limit.

QO, i.e. now pointing towards the image plane in the anti-source direction). Hence, if
we have a celestial point source of unit intensity at a sky position QO, the intensity of
the diffraction image need to be described by a function h(Q2 — €g): the Point Spread
Function (PSF) of the diffraction-limited telescope. The Fourier transform of h(Q — ()
is designated the Optical Tranfer Function (OTF), i.e. we have PSF < OTF.

For the derivation, in the Fraunhofer limit, of the relation between the radiation field
in the pupil plane and the emerging diffraction pattern described by the telescope’s
PSF consider the geometry in figure 5. A quasi-monochromatic celestial point source
is located at the origin of the angular sky coordinates, i.e. along the direction of the
z-axis (0, = 0,0, = 0). This source, at very large distance from the telescope aperture,
produces a flat wavefront in the pupil plane. Taking the centre of the pupil as the
origin, we have at every position 7 of the pupil the same electric field signal, i.e. a fully

19



coherent field distribution across the pupil, analytically expressed as:

E(t) = Ey(t) - €™ with the amplitude ”phasor” Ey(t) =| Ey(t)] - €*® (28)

According to Huygens-Fresnel, the resulting field E(€,t) in a direction @ on a distant
image sphere with radius R is the superposition of the contributions from all positions
within the pupil, each contribution with its own specific phase delay due to the difference
in path length:

~ =2 ~ IQ d 27U _R(@7)
0= S b TR,

with R’(Q, ) the distance between the pupil position 7 and the image position in the
direction € (see figure 5), di = dydz, 1/R the amplitude damping factor due to the
spherical expansion of the wavefield and C' a proportionality constant. To evaluate the
integral in equation (29) in the Fraunhofer limit, we make two important assumptions:

e The coherence length [. = ¢7, is presumed large compared to the maximum path
difference between the waves originating at different positions within the pupil (i.e.
large compared to the pupil diameter). This imposes a requirement on the max-
imum allowable frequency bandwidth of the quasi-monochromatic source. With
this condition fulfilled, the complex amplitude of the image in the direction Q,
E, (t - R’(Q, F)/c), is independent of the pupil coordinate 7. Hence, the complex
amplitude term in equation (29) can be placed in front of the integral.

e The far field approximation holds, i.e. the distance between position 7 in the
pupil and the image position in the direction (2 is linearily dependent on the pupil
coordinate 7

RO, 7 =R+ Q-7 (30)
with Q- 7 = Quy + Q.2 = 0,y + 0,2 the scalar product between the unit image-
direction vector 3 and 7 (by definition 2-dimensional, since 7 has no x-coordinate).

Implementing these assumption, we can rewrite equation (29) as:

E’(Q,t) = (%// .le_zwiﬁ'FdF> [Eg(t— R) e%i”(t_%}

c

C o =2mifeF )\~ R
_ (E//pupupmp(’")e ; dr) Blt— (31)

c

where we have introduced the pupil function P(7), with P(#) = 1 inside the pupil and
P(7) = 0 everywhere else.

Note: The notion of the pupil function can actually be implemented in a more general
fashion and makes it a versatile tool for describing the influence of an aperture on the
incident radiation field, like transmission, reflection, absorption and/or phase shifts.
For example, the pupil may act as a phase mask that introduces position dependent
phase changes ¢(7), these can be represented by putting P(7) = ¢ rather than
P(7) = 1 inside the pupil boundary.

20



Equation (31) is now expressed in the form of a Fourier integral, however the integral
implies a scaled Fourier transform of the pupil function P(7) with conjugate variables
Q and 7/

Next, the proportionality constant C' can be determined by using the fact that the
total energy flux (= radiant flux) ®(¢) through the pupil needs to be conserved in the
diffraction image, i.e.:

// |B(G,1)2R2G = ot // E(S,1)2d5 = () (32)

Applying Parseval’s theorem to the scaled Fourier transform given in equation (31) we
also have:

R dr (t)
E@,0pad = [ [ P() Bt - )P = C*—2 (33
)\2 / [mage plane | pupil plane R | ,F') ( ) | R2 ( )

Combining equations (32) and (33), we obtain C' = 1/A.
Substituting C' in equation 31 and writing the Fourier integral as a "true” (i.e. non-

scaled) Fourier transform in the conjugate variables Q and ¢ = 7/A (beware: d( =
dr/\?), results in:

B = |(3) /[ P@eadat| o= 1) - adio-)

c

The 2-dimensional conjugate vector variable 5 has the dimension radian™ and rep-
resents a specific spatial frequency on the sky expressed in periods/radian. The
dimensionless function a({) is called the amplitude diffraction pattern:

— )\ l
- _ ( >// _2mﬂcd§ with a(2[0,0]) = (E) (%207‘%)

(35)
The dimensionless quantity a(ﬁ 0, 0] entails the product of the amplitude damping
term 1/R, scaled to \, and the geometrical pupil area, scaled to \°.
Equation (35) shows a most important result regarding the diffraction phenomenon: in
the Fraunhofer limit the amplitude diffraction pattern, with the proper normalisation
factor at € [0, 0], can be obtained by taking the Fourier transform of the pupil function,
ie.:

Q@) o (%) P/ (36)

This Fourier pair shows that the diffraction image depends on the size of the pupil,
expressed in the number of wavelengths .

The derivation of the amplitude diffraction image d(ﬁ) was done for a quasi-monochromatic
point source at the origin of the angular sky coordinates along the direction of the x-
axis. A similar point source at an arbitrary position Qg on the sky yields a diffraction
image d(fl — QO), i.e. the same diffraction image but displaced to the geometrical image
position ﬁo. This is an obvious result, and straightforward to derive.

Equation (35) expresses the distribution of the amplitude diffraction pattern. Taking
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the square of the absolute value of this expression yields the intensity diffraction pat-
tern, defined as the telescope’s Point Spread Function (PSF).

Intermezzo: Power flux density transported by an EM-wave

The energy streaming through space in the form of an electromagnetic wave is shared
between the constituent electric and magnetic fields.
The energy density of an electrostatic field (e.g. between plates of a capacitor) pz =
eréoE[?/2 (dimension Joule/m?), with |E| the magnitude of the electric vector (dimen-
sion V/m) and €y the vacuum permittivity (8.8543 - 1071? Asec/Vm). Similarly, the
energy density of a magnetic field (e.g. within a toroid) equals pz = B2/ (24, 110)
(dimension Joule/m?), with |B| the magnitude of the magnetic vector (dimension
Tesla = Vsec/m?) and g the vacuum permeability (47 - 1077 Vsec/Am).
The wave equation for a plane electromagnetic wave traveling along the x-direction
in vacuum is given by:

O*E(x,t) 1 O*E(x,t) 0*B(x,t) 1 &*B(x,t)

02 - ¢z Ot? and ox? - 2 Ot? (37)

for the electric field wave and the magnetic field wave respectively. The magnetic field
wave travels in a plane perpendicular to the electric field, both the electric field and
the magnetic field directions are perpendicular to the direction of propagation (x). The
plane wave solution can be expressed by a harmonic function, using a complex scalar
representation:

E(:r,t) = Eope?Wt=2/N)  and B(:r,t) = Bye'2rwi=z/A) (38)

Consistency with Maxwell’s equations requires that for the EM-wave holds pz = pj3.
Hence, from the above, we have By = Ey/c.

The flow of electromagnetic energy through space associated with the traveling EM-
wave is represented by the Poynting vector § = (1/u0)ﬁxl§, a vector product that
symbolizes the direction and magnitude of the energy transport per unit time across a
unit area (e.g. in units Watt m~2). The vector magnitude |S| = |E||B|(sin ¢)/ 1o equals
|E||B|/ 0, since the magnetic field is perpendicular to the electric field (¢ = 7/2).
Representing the actual wave signal by taking the real part of expressions (38) we get:

S| = EyBycos? 2n(vt—z/)) = egcE? cos? 2m(vt—z/)) = (eo/ug)%Eg cos? 2mr (vt—x/\)
(39

The average power flux density for an ideal monochromatic plane wave, I(t) equals

|S(0)l:

2 2

1 1 B, E
I(t) = (60/M0)5E3C082 2n(vt — z/\) = (60//10)570 = 2.6544-10’370 (40)

expressed in Watt/m? for Ey in Volts/meter.

An idealised monochromatic plane wave is represented in the time domain by an in-
finitely long wave train and is by definition fully polarised. As has already been dis-
cussed, an unpolarised, quasi-monochromatic, radiation field from a thermal source can
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be described by a complex expression for the electric field E(t), comprising a harmonic
oscillation at an average frequency v modulated by a slowly varying envelope, accomo-
dated by the phasor Fy(t), i.e. E(t) = Ey(t) - /2™ The average power flux density
for this wave then follows from the expectation value of the product E(t)E*(t):

I(t) = (eo/mo)*E{E(M)E"(t)} = 2.6544- 10 B {| Ey(t)|*} (41)

Since we are primarily concerned with relative power flur densities generated by these
traveling waves within the same medium, we can disregard in what follows multiplica-
tion with the numerical constant in expression (41), since this (deterministic) quantity
is only of relevance for assessing the absolute numerical value of the power flux density
and bears no influence on the description of the stochastic nature of the signals. In
practical computations, this constant should of course be applied!

End intermezzo: Power flux density transported by an EM-wave

The brightness distribution, S,\(ﬁ, t), of a cosmic source under observation is convolved
with the PSF to obtain the diffraction-limited source image dy(€2,¢). Similarly, the
Fourier transform of the source brightness distribution, S A(ﬁ ,1), is multiplied with the
Optical Transfer Function (OTF) of the telescope to obtain the spatial frequency spec-
trum of the diffraction-limited source image Dy(C, ). Hence we have:

dy (G, 1) = / / ha(G — ) s, (V1) dSY and
D/\(C_:t) = H)\(C_)) . SA(Eat) (42)

In the above relations we have added an index A to stipulate the wavelength dependence
of the PSF and the OTF.
Multiplying (35) with its complex conjugate yields the mathematical expression for the

PSF hy(€):

— — — — )\ — A2 — 2
PSF = hy(@) = a(@)-a* () = |a(d) \2 B ‘ <§> // P(C) e *mHCd¢
pupil plane
(43)
To obtain an expression for the OTF H,(( ), taking the general case of a complex pupil
function, we can use the following relations (verify this yourself!):

- A > = A =
a(Q)) < (E) P(¢) and a"(Q)) & <E> P*(—¢C) (44)
Hence, by applying the convolution theorem, we get:
. . AN\ - .
@)@ & (3) [PO) + P(0) (13

In the common case of a centrally symmetric pupil, the autoconvolution of equation
(45) is just the autocorrelation, and so we can write:

—

OTF = Hy(C) = %// LGS (46)
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with the vector variable of the integral rescaled to the pupil coordinate 7. (The complex
conjugate of the pupil function in equation (46) has of course no meaning in case the
pupil function is real)

Equation (46) characterizes the response function of a low pass filter for spatial fre-
quencies: the transmission continually decreases with increasing spatial frequency, at
a certain value )\fmax, the mutually displaced pupil functions in (46) will no longer
overlap and higher spatial frequencies will not be transmitted.

Important notion: a finite pupil acts as a low pass filter for the spatial frequencies
in the brightness distribution of the celestial object observed. Given a fixed size of the
pupil: the longer the wavelength the lower the cut-off frequency (A|5| = constant).
Moreover it is worth noting that, although non-circular pupils are rarely encountered
in astronomy, expressions (43) and (46) are applicable for arbitrary pupil geometries.

3.1.4 Circular pupils

Circular pupils play a central role in astronomy, so this warrants a special description.
Given the circular symmetry, the pupil function can be expressed as a function of a
scalar variable p with the aid of the 2-dimensional circular box function II(p), where
[I(p) = 1 for |p| < 1/2 and II(p) = 0 for |p| > 1/2. The Fourier transform of this
function involves the first order Bessel function .J; (z):

(p) & % [Jl (ge)] (47)

in which the scalar variable 6, replacing the angular direction vector Q, represents the
circular symmetric diffraction angle. Taking a telescope diameter D and applying the
scaling law for Fourier transforms, we have:

n(g) o 3220 (49

Substituting for p the spatial frequency variable (now also a scalar) p = p/A, the
amplitude of the diffracted field follows from equation (36):
1 2J,(m0D/\)

A Ap A
0 - I|—= — | |=7(D/A 2] _ = 49
o = (7)(3) =~ @ e [Fea] o
Hence, introducing the reduced variable u = 70D /), we arrive at the expression for the
diffraction-limited PSF for a circular telescope:

) A\ 1 N2 [21(u)]”
PSF = |a(0)? = (E) (37(0/2?) [T] (50)
The first term in the expression at the right-hand side is the normalisation of the PSF
for undiffracted light, i.e. for § = 0. It involves the dimensionless quantity that
accomodates the attenuation factor (scaled to A\) of the radiation energy due to the
spherical expansion of the wavefield in the Fraunhofer limit and the geometrical area
of the circular aperture, scaled to \°.
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Figure 6: The Airy brightness function normalised to unit intensity at 0 = 0. Figure

taken from Hecht 1987.

Figure 7: The 2-dimensional Airy brightness function for the diffracted intensity. Figure
taken from Hecht 1987.

The second term is often called the Airy brightness function and has a ring-like structure.

We can designate this term as hy(6), the point source response function normalised to
unit intensity at § = 0, i.e.:

ha6) = l?J;(u)r _ [QJ;(;rgl/?){)\)r

(51)
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Figure 6 and figure 7 show the Airy diffraction patterns in 1- and 2-dimensional display.
The FWHM of the central peak is roughly equal to A/ D radians, around this main peak
ring shaped secondary maxima are present that decrease monotonously in strength.
The OTF can be derived from the autocorrelation of II(A\p/D):

e G () (3]
SO )] e

N

for0 < p < D/A.

H)\(p)

D/A

D

p

Figure 8: The Optical Tranfer Function (OTF) for a circular aperture with diameter
D. The 3d-shape is sometimes referred to as the Chinese Hat function.

Normalization to unity response for zero frequency (p = 0), by dividing with the
telescope area and disregarding the 1/R? attenuation factor resulting from spherical
expansion of the diffracted field in the Fraunhofer limit, yields the spatial frequency
response function H)(p) of the telescope:

= 2o () () (- ()]

Figure 8 shows the OTF resulting from self-convolution of the circular pupil function:
the shape is referred to as the ”Chinese hat”, the transmission of spatial frequencies
decreases almost linearly up to the cut-off frequency D/A, beyond this frequency the
transmission of the telescope equals zero.
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3.1.5 Complex pupils

In expression (31) the pupil function was introduced in its simplest form, i.e. P(7) = 1
inside the pupil and P(7) = 0 everywhere else. We already noted at that point that
the concept of the pupil function is much more general, we shall elaborate shortly
on this here. P(7) = 1 implies that all points within the pupil emit the same field
amplitude E(t) = Fy(t) - €2 If we now more generally introduce within the pupil a
complex pupil function P(7), the same treatment of the Fraumhofer diffraction holds
as before. However, each pupil point now emits its own specific field amplitude and
phase determined by the complex pupil function:

E(F,t) = P(R)Ey(t) - 2 (54)

The derivation of the amplitude diffraction pattern remains unchanged (verify this
youself) and we have (see also equation( 35)):

. A - e
d(Q) N <E> //pupil plane P(g) 6_271—19.4 d< (55)

Complex pupil functions can be generated in several different ways, we give here two
examples.

e An optical mask inserted in the aperture.
Consider a plane wave incident on the pupil plane. Cover the aperture with a foil
with a position dependent transparency (determines the amplitude of P(7)) and
a position dependent thickness or refractive index, which determines the phase of

P(7).

e Microwave phased-array antenna’s.

Antenna’s for radar waves and microwave communication often comprise a flat
plane, filled with a large number of radiators, like waveguide exits, dipoles etcetera.
They radiate according to expression (54). The radiation field emitted from the
pupil ]5(77) can be regulated electronically, in particular its phase. The radiation
beam generated by the collection of individual radiators is defined by the distri-
bution of radiation power over the sky direction vector (3. If we have P(F) = 1
this distribution is given by the Airy function centered around Q= 0, i.e. per-
pendicular to the radiator plane. If we select a pupil function with a linear phase
dependence, ) = e 2% 7/A the radiation beam rotates towards sky direction
QO, commensurate with the Fourier shift theorem. In this way the direction of
the radiation beam can be very rapidly controlled electronically in two angular
dimensions without any mechanical rotation devices!

3.1.6 Rayleigh Resolution Criterion

The image of two, equally bright, point sources with an angular separation € is the
incoherent superposition of two identical Airy functions. The limiting angle at which
the two sources can be separated has been fixed at the value where the maximum of
the one Airy function coincides with the first zero of the other Airy function. The
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first zero of Jy(u) occurs at a value of the reduced variable u = wy = 3.832, this
relates to an angle § = 6, = 1.22)\/D. This angular value is often used to specify the
angular resolving power or discriminating power of the telescope pupil and is commonly
referred to as the Rayleigh criterion. This criterion is only approximate and much
less quantitative than the PSF hy(#) for a circular pupil. Moreover, in certain cases
it is possible to resolve two point sources closer than 6, for example in the case of
the two components of a double star, if the measurement of the image is made with
excellent signal to noise ratio (larger than a few hundred). In such a case the diffracted
image profile 7(f) can significantly differ from the profile of a single point source h,(0)
even if the angular separation of the two components is less than 6,. On the other
hand, if the signal to noise ratio is poor, or if the two sources have greatly different
brightness, the value of 6, might be largely insufficient to reliably extract separate
source contributions. The latter case is certainly applicable to crowded source fields
with high brightness contrasts between the observed field sources. In that case the value
of Oy can be severely compromised and the actual resolving power will be significantly
reduced in a case specific fashion!

3.2 Other limits to image quality
3.2.1 Optical aberrations

A common and severe aberration of both lenses and mirrors is spherical aberration.
This aberration arises from the fact that lens or mirror annuli with different radii have
different focal lengths. In the case of a spherical mirror this aberration can be completely
eliminated for rays parallel to the optical axis by deepening the spherical mirror surface
to a paraboloidal surface.

Paraxial ray

Figure 9: Coma error for an off-axis object. The characteristic "pear-shaped” ray dis-
tribution near the off-axis geometrical image point is indicated in the lower right-hand
corner. Figure taken from Kitchin 1998.

However a paraboloidal mirror suffers from another aberration called coma. Coma
causes the images for objects that are not located on the optical axis to consist of a
series of circles which correspond to the various annular zones of the mirror surface,
these circles are progressivily shifted towards or away from the optical axis giving rise
to a characteristic pear-shaped image blur (see figure 9).

28



The figure also shows the condition that needs to be obeyed to reduce coma to zero in
an optical system, the Abbe sine condition:

sinf Bparas

S0 By = constant (56)

where the angles are defined in figure 9.

The severity of the coma aberration at a given angular distance from the optical axis
is inversely proportional to the square of the focal ratio of the telescope. Therefore,
the effect of comatic aberration can be significantly reduced by employing as large a
focal ratio as possible. Examples of optical designs with large focal ratios comprise
the Cassegrain and Ritchey-Chretien systems, we shall dwell on these shortly in the
following paragraph since they constitute the most common format for large telescopes
in astronomy.

The configuration of the Cassegrain system is sketched in figure 10. It is based on a

Skylight baffle
i
Primary mirror ,-r’
focus f
X ' Cassegrain
focus
; .//
N .
Convex hyperboloid Concave paraboloid
secondary mirror primary mirror
On=axs |mage e On=qxis (moge
- Image 1 off - axis
7 Image § oM-axs e
/ . Airydise
o— '
@]
Airy disc
& o T

Figure 10: Upper panel: Cassegrain configuration with parabolic primary and hyperbolic
secondary mirror. Lower left: comparison between the on-axis Airy-disk and the coma-
dominated 1mage at an off-axis angle of 0.5 degrees. Lower right: improved off-axis
performance for a two-hyperboloid Ritchey-Chretien configuration. Figure taken from
Kitchin 1998.

paraboloidal primary mirror and a convex hyperboloidal secondary mirror, the near fo-
cus of the secondary hyperboloid coincides with the the focus of the primary paraboloid.
The Cassegrain focus is the distant focus of the secondary mirror. The major advan-
tage of the Cassegrain system 1is its telelens characteristic: the secondary hyperboloid
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expands the beam from the primary mirror so that the focal length of the Cassegrain
system becomes several times that of the primary mirror. The coma aberration is con-
sequently substantially reduced to that of a single parabolic mirror with a focal length
equal to the effective focal length of the Cassegrain. The beam expanding effect of
the secondary mirror makes that Cassegrain telescopes normally work with focal ratios
between f12 to f30, although the primary mirror is only f3 or f4! Figure 10 shows the
images for a 25 cm primary in a f4/f16 configuration. Displayed are the theoretical
on-axis geometrical image point, the on-axis Airy disk arising from diffraction by the
25 ¢cm primary mirror, and the coma-dominated pear-shaped image blur at an off-axis
angle of 0.5 degrees (the angular scale of 5 arcseconds is given for reference to the actual
angular sizes of these images).

A large improvement in image quality can be obtained if the Cassegrain is modified
to a Ritchey-Chretien design. The optical design is the same as for the Cassegrain
configuration with the exception that the primary mirror is hyperboloidal rather than
paraboloidal and a stronger hyperboloid is used for the secondary. With this design
both spherical aberration and coma can be corrected, resulting in an aplanatic system.
The improvement in the image quality is also displayed in figure 10 for a 50 cm Ritchey-
Chretien telescope with the same effective focal length as the 25 cm Cassegrain. In fact,
the improvement relative to the Cassegrain system is larger than the comparison of the
images displayed in figure 10 suggests, since a 50 ¢cm Cassegrain would have its off-axis
image twice the size (i.e. four times the area) and the on-axis Airy disk half the size
(i.e. a quarter times the area) shown in the figure. The optics employed in the Hubble
Space Telescope (2.4 m primary mirror) is a Ritchey-Chretien design.

A Cassegrain system can however be improved considerably by the addition of correc-
tive optics just before the focus. This corrective optics comprises lens assemblies whose
aberrations oppose those of the main Cassegrain system, they involve aspheric surfaces
and/or the use of exotic materials like fused quartz. Hence, images can be reduced to
less than the size of the seeing disk (see next paragraph) up to fields of view of the order
of one degree.

3.2.2 Atmospheric degradation: speckle images

The intrinsic quality of modern optical telescopes in terms of their imaging perfor-
mance can be made very close to the diffraction limit, certainly when taking into ac-
count recently developed sophisticated control systems for optimizing the figure of the
mirror surface by employing active corrections for bending under gravity of the mirror
mass and temperature gradients over the area, the so called active optics. However, in
ground-based telescope systems the image quality is limited by turbulent motions in
the atmosphere, giving rise to a randomly varying value of the refractive index n(7, t)
in the air columns over the pupil area. Horizontal scales for these fluctuations range
from several centimeters to several meters. If an undistorted flat wave front enters the
atmosphere, three main effects caused by atmospheric turbulence can be identified in
the pupil plane of the telescope:

e Variations in amplitude of the wavefront (i.e. lighter and darker brightness patches
to the ”eye”) corresponding to concentration or spreading of the wavefront energy
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(scintillation).

e Variation in the angle of the mean tangent plane to the wavefront causing angular
motion of the image. Characteristic wavefront slopes are of the order of a few
pm’s/meter.

e Reduction of spatial coherence of the wavefront across the pupil plane due to
random fluctuation of the phase, that leads to smearing of the image, resulting in
image sizes much larger than from diffraction alone.

These effects can be described by introducing a new, instantaneous, pupil function
which is random and complex:

P(7t) = P(M¥(71) (57)

in which P(7) represents the simple geometrical pupil function introduced in equation
(31) and (7, t) represents a wavefront that randomly varies in amplitude and phase.
During a very short exposure, of the order of a few milliseconds, one may consider the
wavefront frozen in its instantaneous shape. If we neglect for the moment the amplitude
fluctuations (i.e. scintillation), we can write:

b = e D (59)

in which the phase of the wave, ¢(7,t), is a random variable whose spatial statistical
distribution is determined by the properties of the randomly varying value of the re-
fractive index in the turbulent cells of the overlaying atmosphere. If we consider an
atmospheric layer of thickness Ah that is large compared to the scale size of the turbu-
lent cells, so that Gaussian statistics apply (i.e. the central limit theorem), the phase
shift produced by the refractive index fluctuations is:

o7 t) = k / n(7,t, 2)dz (59)

with n(7,t, z) the refractive index random variable, z the vertical coordinate and k =
27 /A the wave number. This randomly varying phase shift describes the effects of
angular motion and smearing of the image, the amplitude variations may often be
neglected if the turbulence is not very severe.

Hence we have now an instantaneous, random, pupil function:

P(F,t) = P(Fe @70 (60)

which can be used to derive the point source response of the telescope due to atmo-
spheric turbulence. The instantaneous image of a point source is obtained from the
Fourier transform of the autocorrelation of the instantaneous pupil function. Conse-
quently, the image will be an intensity distribution in the focal plane of the telescope,
that randomly changes shape with a frequency of 200 to 300 times per second, deter-
mined by the coherence time 7. of the atmosphere. For exposures shorter than this
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Figure 11: Left panel: short exposure speckle image. Right panel: long exposure showing
the smoothed “seeing” disk of the observed point source.

coherence time, the wavefront is considered frozen in its momentary shape, the associ-
ated momentary intensity distribution comprises an image with a ”speckle” structure
as shown in figure 11. Every speckle has a diffraction limited PSF of A\/D, e.g. 0.1
arcseconds for a telescope diameter of 2 meters at A = 1lum. In good approximation
one may consider each speckle to be the image resulting from rays leaving perpendic-
ular "equal-slope” areas on the wavefront in the direction of that specific speckle (see
sketch of ray paths in figure 12). The speckle pattern randomly fluctuates on the same
time scale as the wavefront due to the random phase fluctuation across the pupil plane,
moreover the speckle pattern as a whole jitters as well following the variations of the

undisturbed flat wavefront

distorted wavefront at
pupil plane

mirror

speckle i Speckle i+1 image plane
[TTTTT777777 7777 777777777777

Figure 12: Speckle formation resulting from rays leaving perpendicular ”equal-slope”
areas on the wavefront in the direction of a specific speckle.

32



mean tangent plane to the wavefront (the angular motion).

The technique of speckle imaging requires taking many short exposures, which ”freeze-
out” the effects of the atmosphere. All short exposures are Fourier transformed and
averaged in Fourier space to preserve the high-resolution (i.e. diffraction limited) in-
formation present in the individual speckle images. The averaged spatial frequency
spectrum is then subjected to an inverse Fourier transform, resulting in the final image.
In the picture shown in figure 13, the left frame shows a 100 millisecond exposure on
the bright T-Tauri star V807 Tau, the speckle structure caused by the atmosphere is
clearly evident. The central frame displays a 40 seconds exposure on the same source,
the speckle structure has averaged out to a smooth fuzzy source image. The right panel
shows the result of Fourier-processing of the series of speckle images, demonstrating
that this star is actually a binary!

Figure 13: Left frame: a 100 millisecond exposure on the bright T Tauri star V807
Tau, the speckle structure is clearly seen. Middle frame: a 40 second exposure on the
same source, the speckles have averaged to a smooth fuzzy source. Right panel: Speckle-
processed image revealing the binary nature of the source.

3.2.3 Seeing: the Fried parameter

Figure 14 shows a comparison of a sky image taken by a ground based telescope,
suffering from atmospheric seeing, with the image of the same sky field obtained from
outer space with the Hubble Space Telescope, in which the atmospheric influence is
eliminated and the quality of the image is solely determined by the diffraction limit
of the HST primary mirror. As is evident from figures 11, 13 and 14, long exposures
combine speckle images into a severely broadened image, this broadening is called seeing.
The resulting smoothed PSF, the so-called seeing disk, is slightly broader than a single
speckle pattern and amounts to &~ one arcsecond. This seeing-value of one arcsecond
corresponds to the diffraction limit of a 10 cm diameter telescope at A = 0.5 um. The
merit of using larger optical telescopes is, therefore, not primarily sharper images but
sensitivity owing to their much larger light collecting power!

The observed intensity at each point of a long-exposure image is simply the time-

— =

averaged instantaneous intensity I(2) = E {I(Q, t)}:
I(@) = B{s(D) = h(L,1)} = s(D) « E{n(&,1)} (61)
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Figure 14: Influence of atmospheric seeing on a sky image. Left: image obtained by a
ground-based telescope, resolution 1.1 arcseconds dominated by atmospheric turbulence.
Right: the same sky field imaged by the 2.4 meter Hubble Space Telescope, resolution
diffraction limited to 0.05 arcseconds. Credit Space Telescope Science Institute.

with s(Q) the intensity of a constant quasi-monochromatic source and h(€2, t) the ran-
domly variable PSF.

The spatial frequency spectrum of the seeing disk in long exposure images follows from
the computation of the normalised mean OTF H(() = E {H(f, t)} which, according
to equation (46), equals the normalised mean autocorrelation of the pupil function in
the case of centrally symmetric pupils:

: 1 it(C 0 p(E1_ F)eitlC—E o) g
{ f f P2(5I)d5, / ~/pupi1 plane P(C )6 P(C - C )6 dc
pupil plane

1 / / NPE — —i[o({",1) = B =C 01 g
_ _ _ P P _ E e 13 5 ) d

f fpupil plane P2 (C ,)dC ' pupil plane (C ) (C C ) { } C
(62)

with (' = /A, = 7/A and ' = dr'/\? the scaled pupil position vectors and
differential area, normalised to the wavelength A. The phase fluctuations gb(f , t) over
the wavefront in the pupil plane can be regarded as resulting from a large number of
perturbations in the overlaying atmosphere, which are mutually phase independent.
According to the central limit theorem the distribution of the random variable ¢(5 , )
will be Gaussian with zero mean over both time and space. If x is a real Gaussian
random variable, it is straightforward to show (verify this yourself!) that:

E {exp(iz)} = exp [—% E {xQ}} (63)

and consequently we have for the expectation value in the integrand of equation (62):

E {exp [~il0("0) = 6T = C0]} = e [—5 B{[0d0) - 0" - C,0]'}]

H() = E
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1 d
= exp [ Qu(0) (64)
where we have introduced a structure function for the phase:

Q€)= B{[6(C"1) - 0" = S0’}
— 2 [ {60} - B{C00(C" - E.1)] (65

This structure function for the phase distribution over the wavefront can be derived from
the structure function of the refractive index for homogeneous and isotropic turbulence.
We shall forego this calculation here and refer to the treatment by F. Roddier: The
Effects of Atmospheric Turbulence in Optical Astronomy (Progress in Optics XIX, 281,
1981). The phase correlation on the perturbed wavefront expressed by equation (65)
can be characterised by a wavelength dependent correlation length r. = A(.. A detailed
computation involving the afore mentioned structure function of the refractive index

yields:
M o (MY
Qy(7) = 2 <—> = Qu(¢) =2 (—) (66)

Te

with:
o ~3/5
re = [1.45 2 / C2(2) dz] (67)
0

in which the wave number & = 27/\ and where C?(z) represents the refractive index
structure constant, that strongly depends on the altitude z, typical values range from
10~ m~2/3 near the ground decreasing to 107" m~2?/3 at an altitude of 10 km.

The common case of a circular pupil with a diameter D > r. yields for the mean value

of the normalised OTE:
) \p 5/3
H(p) = exp (—) (65)

where we have again used the scalar spatial frequency variable p following the limitation
to circular symmetry. The point source response is the Fourier Transform of H(p).

It is customary to express the degraded resolution in terms of the diameter D of a
diffraction limited circular pupil which would give an image of the same angular extent
as the seeing disk. Dp is the so-called Fried parameter, which can be computed from:

Dp/A

Jrowi = [ 2o (2) - (2) (- (32)) e

0

For the lefthand integral in equation (69):

07019 {exp — <&>5/3} dp (70)
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we can introduce the variable z = [(Ap)/r.]”® and rewrite this as:

o0

3 12 3 6 c
_T_c/$1/5 e dp — gr_r<—> — 0.55< (71)
0

Introducing a change of variable z = (Ap)/Dp, we can rewrite the righthand integral
of equation (69) as:

(% %) L/l <xarccosx N x2)> dx} — (% f—f) (116) = 8D—;2 (72)

Hence, the Fried parameter relates to the phase correlation length r. on the perturbed
wavefront as:
Dy = 4412 = Dy = 21r, (73)

and, implementing expression (67), we find:

00 -3/5 00 —-3/5
Dr = [0.423 2 / C2(2) dz] — 0.185 2% / C2(2) dz] (74)
0 0

Subsequently, expressing the phase structure function Q4(7) and the mean OTF H (p)
for a circular aperture in terms of the Fried parameter Dy, we can rewrite equations

(66) and (68) as:
Qs(7) = 6.88 (%)5/3 H(p) = exp [— 3.44 (2_];>5/3] (75)

From this we see that the spatial frequency cut-off p ~ Dp/)\ (H(p) ~ 0.03), conse-
quently the angular resolution Af ~ \/Dp. This value is often called the seeing angle
or simply the seeing. A typical value for D in the visible range of the spectrum ranges
between 10 and 20 cm. So if for instance the seeing at the Keck 10-m telescope is 10
cm, the image quality is no better than that provided by a 10-cm amateur telescope.
From expression (74) it is clear that the Fried parameter is highly chromatic: ~ \5/°,
This means that the coherence area rapidly increases towards the infrared: a Dp of 20
cm at 0.5 pm increases to almost 1.2 meters at 2.2 ym.

3.2.4 Real time correction: principle of adaptive optics

Under certain conditions, it is possible to restore spatial frequencies, filtered by the
atmosphere, in real time. This is the aim of adaptive optics, which has developed very
rapidly since 1985.

An atmospheric compensation system employing active optics contains three main com-
ponents: a sampling system, a wavefront sensor and a correction system. The sampling
system provides the sensor with the distorted wavefront, in astronomy this normally
entails a partly reflecting mirror, which typically diverts & 10 percent of the radiation to
the sensor, allowing the bulk of the radiation to proceed to form the main image. Many
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Figure 15: Left: the isoplanatic area. Right: The Hartman array sensor for generation
of the error signals caused by turbulence induced ”folds” in the flat wavefronts arriving
from a distant point source. Figure taken from Kitchin 1998.

adaptive optics systems use a guide star rather than the object of interest to determine
the distorsions of the wavefront. Inevitably, the guide star must be very close in the sky
to the object of interest, or its wavefront will have undergone a different atmospheric
distorsion. The region of the sky over which the images have been similarly affected by
the turbulent atmosphere is called the isoplanatic area or patch. This can in practise
be as small as a few arcseconds. The notion of the isoplanatic area is displayed in the
left panel of figure 15. This small angular size of the isoplanatic area means that only
very few objects have suitable guide stars, therefore artificial guide stars have been
produced. This is being accomplished by the production of a so-called optical echo: a
laser is tuned to one of the sodium D-line frequencies and excites the free sodium atoms
in the atmosphere at a typical height of 80-90 km. The glowing atoms appear like a
star-like point close to the object of interest. Laser-produced guide stars possess two
inherent problems. Due to the relatively low height of the laser-produced guide star,
the light path is slightly conical and may still differ substantially from the light path
traversed by the radiation from the object of interest. Secondly, the outgoing laser beam
is affected by atmospheric turbulence as well, i.e. the guide star moves with respect to
the object of interest, again resulting in a blurred image during long exposures.

A wavefront sensor detects the distorsions in the incoming wavefront provided by the
beam splitter. Figure 15 shows the so-called Hartmann sensor, frequently used in astro-
nomical adaptive optics systems. It employs a two-dimensional array of small focussing
lenses, each of which providing an image onto an array-detector. In the absence of
wavefront distorsions, each image is centered on an array-element. Distorsions in the
wavefront will displace the images from the detector centres, the degree of displacement
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and its direction is used to generate error signals which are fed to a correction mirror.
Since the atmosphere changes on a timescale of the order of ten milliseconds, the sam-
pling, sensing and correction has to occur in a millisecond or less. The simplest systems
only correct for the overall tilt of the wavefront, i.e. the mean tangent plane change
of the wavefront that causes angular motion of the image. This is accomplished by
suitably tilting a plane or segmented mirror placed in the light beam of the telescope in
the direction opposite to the angular motion. A similar technique is the so-called shift
and add methodology, in that case multiple short exposure images are shifted until their
brightest points are aligned and then added together. More sophisticated techniques
also involve fine scale displacement corrections by employing a thin mirror capable of
being distorted by piezo- electric or other actuators placed undernearth the deformable
mirror surface. The error signals of the sensor elements are then used to distort the
mirror in the opposite manner relative to the distorsions of the incoming wavefront.
Currently operating systems using this approach can achieve diffraction-limited perfor-
mance in the near-infrared for telescopes of 3 to 4 meter diameter, i.e. ~ 0.2 arcseconds
at 2 pm.

The efficiency of an adaptive optics system is measured by the so-called Strehl ratio,
which is the ratio of the intensity at the centre of the corrected image to that at the
centre of a perfect diffraction-limited image of the same source. Strehl ratios of 0.6 to
0.8 are currently being achieved.
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4 Band-limited sensing systems: Nyquist frequency

Let us consider the general case of a signal S(x) which has been subject to the instru-
ment response R(x), so that the resulting measurement M (z) follows from

M(z) = S(z) * R(z) (76)
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Figure 16: Illlustration of sampling optimally, compared with undersampling and over-
sampling. Left in the time domain, right in the Fourier domain. Figure taken from
Bracewell 1986.
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Because of the finite frequency response of the instrument, M (x) is always limited in
bandwidth, i.e. the Fourier transform M(s) < M(z) is a bandwidth-limited function.
This function is characterised by a maximum cut-off frequency s,,q., also called the
critical or Nyquist frequency (s.). In the case of a gaussian response the frequencies
will never be distributed purely gaussian, since no physical system can transmit the
tail frequencies up to co. Nyquist (and Shannon) established a theorem for optimum
sampling of band limited observations. This theorem states that no information is lost
if sampling occurs at intervals 7 = 1/(2s.). Let M(x) subsequently be sampled at
regular intervals, M(x) — M (n7) with n an integer and 7 the sampling interval. To
describe the sampling process quantitatively we introduce the shah function, also called
the comb of Dirac, which constitutes a series of ¢ functions at regular distances equal
to 1: -

Lll(z)= > 6(z—n) (77)

n=—oo

This shah function can be extended to arbitrary distances by noting alll(ax) =
Yn0(x—n/a).

The sampled signal M (x) can now be expressed as

My(z) = 3 M(nr)(a —nr) = 2111 (5) M(z) (78)

T

The Fourier transform M;(s) < M(z) equals
1
My(s) = LLL(rs) « M(s) = ~ S M (s - =) (79)
TS T

This expression shows that, except for a proportionality factor 1/7, M(s) represents
a series of replications of M (s) at intervals 1/7. Because M(s) is a bandwidth-limited
function with a cut-off frequency of say s = s., we can recover fully the single (i.e. not
repeated) function M (s) from this series by multiplication with 7 and by filtering with
the gate function I1(s/2s.):

x

I1 <2i> T1LL(78) % M(s) < 2ssinc2s.x x L1 <
Sc

M(x 80
°) M) (50)
M (x) can be reconstructed exactly if the series of M(s) functions in the frequency
domain touch without overlap. This is the case if we sample at 7 = 1/(2s.), which
therefore is the optimum sample interval. Performing the convolution we fully recon-
struct M(z), i.e.:

T — Nt

M(z) = +/oosinc ("3 - x) > M(nr)a(a’ —nr)de’ = 3 sine (

— 00

) M(nr)  (81)

-
We can check this result easily at a sampling point = j7, with sinc(j —n) = 1 for

j=mn and = 0 for j # n:
M(x) = M(j7) (82)
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Figure 17: The function h(t) shown in the top panel is undersampled. This means that

the sampling interval A is larger than 2f:m' The lower panel shows that in this case
1

the power in the frequencies above 5x is 'mirrored’ with respect to this frequency and

produces an aliased transform which deviates from the true Fourier transform. Figure
taken from Press et al. 1992.

Note: Eq. 80 shows that the calculation of intermediate points from samples does not
of course depend on calculating Fourier transforms. The equivalent operation in the
x-domain entails the convolution of 2s.sinc2s.x directly with 111 (z/7)M(z). Notice
that the omission of the 1/7 factor in Eq. 78 ensures the proper normalization in the
s-domain! Expression 81 shows that a superposition of a series of sinc-functions with
weight factors M (n7), i.e. the sample values, at intervals 7 exactly reconstruct the
continuous function M (x). In fact the sinc-functions provide the proper interpolation
between the consecutive sample points, this is the reason why the sinc-function is
sometimes referred to as the interpolation function.

Thus, the use of a discrete Fourier transform causes no loss of information, provided
that the sampling frequency % is twice the highest frequency in the continuous input
function (i.e. the source function convolved with the response function). The maximum
frequency s,,q, that can be determined for a given sampling interval equals therefore
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%. If the input signal is sampled too slowly, i.e. if the signal contains frequencies

higher than %, then these cannot be determined after the sampling process and the
finer details will be lost (see Fig.16). More seriously however, the higher frequencies
which are not resolved will beat with the measured frequencies and produce spurious
components in the frequency domain below the Nyquist frequency. This effect is known
as aliasing and may give rise to major problems and uncertainties in the determination

of the source function, see figure 17 in the case of a time function.
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5 Coherence and Interference

5.1 The Visibility function

The coherence phenomenon is directly coupled to correlation, and the degree of coher-
ence of an EM-wave field F (7, t) can be quantitativily described by employing the auto-
and cross-correlation technique for the analysis of a stochastic process.

The electric vector of the wave field at a position 7 at time ¢, F(,t), is a complex
quantity, denoting the amplitude and phase of the field. To assess the coherence phe-
nomenon, the question to be answered is: how do the nature of the source and the
geometrical configuration of the situation relate to the resulting phase correlation be-
tween two laterally spaced points in the wave field?

This brings to mind Young’s interference experiment in which a primary monochromatic
source S illuminates two pinholes in an opaque screen, see figure 18. The pinholes S
and Sy act as secondary sources, generating a fringe pattern on a distant observation
plane . If S is an idealized monochromatic point source, the wavelets issuing from
any set of apertures S; and Sy will maintain a constant relative phase; they are precisely
correlated and therefore mutually fully coherent. On the observation plane ¥y a well-
defined array of stable fringes will result and the radiation field is spatially coherent.
At the other extreme, if the pinholes S; and S, are illuminated by separate thermal
sources (even with narrow frequency bandwidths), no correlation exists; no fringes will
be observable in the observation plane ¥ and the fields at S; and S5 are said to be
incoherent. The generation of interference fringes is seemingly a convenient measure of
the degree of coherence of a radiation field. The quality of the fringes produced by an
interferometric system can be described quantitativily using the Visibility function V:

V= [max - Imm (83)
Imam + Imin
here 1,4, and I, are the irradiances corresponding to the maximum and adjacent
minimum in the fringe system.

5.2 Young’s dual beam interference experiment

To assess the mutual coherence between two positions in a radiation field in a quan-
titative fashion, consider the situation displayed in figure 18, with an extended nar-
row bandwidth radiation source S, which generates fields E(7,t) = Ey(t) at S; and
E(Fg,t) = EQ(t) at Sy, respectively. Interalia: no polarization effects are considered,
and therefore a scalar treatment using E(F, t) will suffice.

If these two positions in the radiation field are isolated using an opaque screen with
two small apertures, we are back to Young’s experimental set-up. The two apertures
serve as sources of secondary wavelets, which propagate out to some point P on the
observation plane 5. The resultant field at P is:

Ep(t) = CLE\(t —t,) + CoEy(t — ty) (84)
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Figure 18: Young’s experiment using a quasi-monochromatic source S illuminating two
pinholes S1 and Sy. Figure taken from Hecht 1987.

with ¢, = ri/c and ty = r5/c, 1 and ry representing the pathlengths to P as measured
from S} and S5, respectively. This expression tells us that the field at the space-time
point (P, t) can be determined from the field that existed at S; and S, at (¢ — t1) and
(t — t9), respectively, these being the the instants when the light, which is now over-
lapping at P, first emerged from the apertures. The quantities C, and C, are so-called
propagators, they mathematically reflect the alterations in the field resulting from it
having transversed either of the apertures. For example, the secondary wavelets issuing
from the pinholes in the Young set-up are out of phase by /2 radians with the primary
wave incident on the aperture screen. In that case, C; and Cy are purely imaginary
numbers equal to ¢/2.

5.3 The mutual coherence function

The resultant irradiance at P, averaged over some time interval which is long compared
to the coherence time, is:

I = E{Ep(1)Ep (1)} (85)

Employing equation (84) this can be written as:

I = CiCTE{Ei(t - t)Ei(t — 1)}
+ CoCSE{By(t — ta) B3t — )

45



+ CICSE{Ei(t — 1) E3(t — 1) }
+ CICoB B} (t — t1) Ea(t — 1) } (86)

It is now assumed that the wave field is stationary, as is almost universally the case, i.e.
the statistical nature of the wave field does not alter with time and the time average
is independent of whatever time origin we select (i.e. the wave field is designated as
Wide Sense Stationary). Accordingly, the first two expectation values in equation (86)
can be rewritten as:

Is, = B{E(t)E;(1)} and Is, = E{E(t)E5(t)} (87)

where the time origin was displaced by amounts ¢; and t,, respectively. The subscripts
for the irradiances used here underscore the fact that they refer to the values at points
S1 and Sy. Furthermore, if we introduce the time difference 7 = t5 — ¢, the time origin
of the last two terms can be shifted by an amount ¢, yielding:

CiC3E{E\(t+7)E5 (1)} + CiCE {E; (t + 1) Ex(t) } (88)

This expression comprises a complex quantity plus its own complex conjugate and is
therefore equal to twice its Real part:

2 Re [C1C3E{ By (t+7)E3 (1) }] (89)

As noted before, the C-coefficients are purely imaginary, i.e. CN’ICN’Q‘ = CiCy, =
|G| Cal.
The expectation value contained in expression (89) is a cross-correlation function, which
is denoted by: . . .
Tio(r) = B{Ei(t+ 1) E5(t)} (90)

This equation is referred to as the mutual coherence function of the wave field at
positions S; and S;. Making use of the definitions above, equation (86) now takes the
form: . . o .

I = |Ci[’Is, + |Cs*Is, 4 2|C1||Ca| Re Tia(7) (91)
The terms |C, |*Tg, and |Cy|*Ts, are the irradiance at P, arising when one or the other
of the apertures is open alone: either C'; = 0 or C'; = 0. Denoting these irradiances as

I, and I, we have: o ~
I = I + I, + 2|C4]||Cs| ReT1o(7) (92)

If S; and S5 are made to coincide, the mutual coherence function becomes the autocor-
relation function:

Mu(r) = Ri(r) = B{Ey(t+7)E}(1)} (93)
or:

Coa(r) = Ra(r) = E{Ea(t+7)E;(1)} (94)
One can imagine that two wavetrains emerge from these coalesced pinholes and somehow

pick up a relative phase delay 7. In the situation at hand 7 = 0, since the optical path
difference (shorthand: OPD) goes to zero. Hence:

Is, = E{E\(t)E;(t)} = Twu(0) = E{|Ei(t)]’} and
Is, = E{Ex(E5(t)} = Tn(0) = E{[E2(t)*} (95)
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These autocorrelation functions are also called self-coherence functions. For 7 = 0 they
represent the (average) irradiance (power) of the radiation field at positions S; and S,
respectively.

5.4 Interference law for a partially coherent radiation field:
the complex degree of coherence

From equation (92) and the selfcoherence functions we can now write:
~ A LI
Culics) = v (90
V/T11(0)y/T22(0)

Hence, the normalized expression for the mutual coherence function can now be defined
as:

o = et B{BGHE@) (97)
I'11(0)I'92(0) \/E{|E1(t)|2}E{|E2(t)|2}

This quantity is referred to as the complex degree of coherence, equation (92) can
now be recast into its final form:

I = ]1 + ]2 + 2\/]1[2 Re ;}’/12(7_) (98)

which is the general interference law for a partially coherent radiation field.

The quantity 712(7) simultaneously gives a measure of the spatial coherence by compar-
ison of two locations in space (S; and Sy in the above case) and the coherence in the
time domain by accounting for a time lag 7 between both signals.

F12(7) is a complex variable and can be written as:

’712(7) = W12(T) |6i¢12(7) (99)

From equation (97) and the Schwarz inequality it is clear that 0 < |y19(7)| < 1. The
phase angle 115(7) of 412(7) relates to the phase angle between the fields at S; and S,
and the phase angle difference concomitant with the OPD in P resulting in the time lag
7, as shown in equation (90). For quasi-monochromatic radiation at a mean wavelength
A and frequency 7, the phase difference ¢ due to the OPD can be expressed as:

b = 27”(7«2—701) — 2rpr (100)

If we designate a phase angle a;»(7) between the fields at S; and Sy, we have

V12(7) = [o2(7) — @)].

Hence:
Re 12(7) = [F12(7)] cos [a12(7) — @] (101)
Substitution of this expression in the interference law for partially coherent radiation

given in equation (98) yields for the intensity observed at point P on the observation
plane Yo:

I = Il + .[2 + 2\/[1]2 |’?12(T)|COS [0112(7') —¢] (102)
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The maximum and minimum values of I occur if the cosine term in equation (102)
equals +1 and —1, respectively. The Visibility V' (see definition (83)) at position P
can therefore be expressed as:

IV

Y 103
Y2 () (103

In practice, frequently things are (or can be) adjusted in such a way that I; = I, giving
rise to the following simplified expressions for the total irradiance I and Visibility V:

I = 216 {1 + |712(7)| cos [ai2(T) — @]} and V = |F1a(7)| (104)

We note that in this case the modulus of the complex degree of coherence is identical
to the visibility of the fringes ! This then provides an experimental means of obtaining
|712(7)| from the resultant fringe pattern. Moreover, the off-axis shift in the location of
the central fringe (no OPD — ¢ = 0) is a measure of a;»(7), the relative retardation
in phase of the fields at S; and S5. Thus, measurements of the visibility and the fringe
position yield both the amplitude and phase of the complex degree of coherence.
Dealing with the definition of the complex degree of coherence, it can be noted that the
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Figure 19: Partially coherent intensity fluctuations in a thermal radiation source. Both
absolute values I and relative values NI = I — I are shown. Figure taken from Hecht
1987.

intensity fluctuations are also expected to be partially coherent, since the amplitude and
phase fluctuations in a thermal signal tend to track each other. An impression of such a
fluctuating wave signal is given in figure 19, both in absolute value and centered around
the avarage value I: AJ = I —I. The random superposition of wave packets results in
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a Gaussian distribution of the amplitude fluctuations for one direction of polarisation
and, consequently, is sometimes referred to as Gaussian light. This fact directly fol-
lows from the central limit theorem. Taking the cross-correlation E {AI(t + )AL (t)}
between two different parts of the incoming radiation beam yields now in principle
an interferometric tool, which does not involve the usage of phase information. This
technique, labelled as correlation or intensity-interferometry, can indeed be succesfully
applied for very bright stellar sources to obtain accurate estimations of stellar angular
diameters. It was first tried in radio astronomy in the middle 1950’s, and later on (1956)
also succesfully used in an optical stellar interferometer by Hanbury Brown and Twiss.
They employed search-light mirrors to collect starlight onto two apertures, which was
then focussed on two photomultiplier devices. Although photomultipliers operate on
the photo-electric effect, which is keyed to the quantum nature of the optical light,
laboratory zline experiments showed that the correlation effect was indeed preserved in
the process of photo-electric emission.

The star Sirius was the first to be examined, and it was found to possess an angular
diameter of 6.9 milliseconds of arc. For certain stars angular diameters of as little as
0.5 milliseconds of arc can be measured in this way.
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6 Indirect spectroscopy

6.1 Temporal coherence

Temporal coherence is characterised by the coherence time 7. . The value of 7. follows
from the finite bandwidth of the radiation source under consideration. If we assume a
quasi-monochromatic (QM) source, then we have 7, ~ ﬁ with Av the line width (in
radiation frequency) of the QM-source.
These effects can be assessed with the aid of the Wiener-Khinchine theorem:
+00
Sw)= [ R(r)e > dr (105)
+00
R(1) = / S(v)e*™  dy (106)

Take as an example a Gaussian shaped spectral line profile, i.e.
L\ 2 N
Sw) ~ e (%) = R(r) ~ e (%) (107)

As can be seen from the FT (indicated by <= in expression(107), the wave packet
corresponding to this line profile has an autocorrelation function that is also Gaussian
with a characteristic width 7., moreover the autocorrelation R(7) equals the autocovari-
ance C(1). This corresponds to a wave train with a Gaussian shaped envelope for the
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Figure 20: A Gaussian shaped line profile of a quasi-monochromatic radiation source
and the shape of the associated wavepacket. Figure taken from Hecht 1987.
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wave amplitude (see figure 20).
Try to memorize the following notions:

e A first order system shows an exponential autocorrelation function R(7).

e A Gaussian line profile in the frequency domain shows an amplitude modulated
wave train with a Gaussian envelope in the time domain (see discussion above).

e A Lorentz line profile in the frequency domain shows an exponentially damped
oscillator profile in the time domain (try this yourself).
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Figure 21: The influence of the coherence length on the interference pattern of two
diffracted coherent thermal radiation sources S1 and Sy. Figure taken from Hecht 1987.
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For spectroscopic measurements at infrared and shorter wavelengths one can directly
disperse the incoming radiation beam with the aid of a wavelength dispersive device, like
for instance a transmission or a reflection grating, and measure the resulting intensity
distribution (i.e. the spectrum). However for spectroscopy at radio and submillimeter
wavelengths one employs an indirect method. The incoming wave signal is fed into
a correlator that produces the temporal coherence function R(7), a subsequent FT of
this function yields the spectral distribution S(v) by virtue of the Wiener-Khinchine
relation.

6.2 Longitudinal correlation

Associated with the coherence time 7, is the so-called coherence length [, = c7..

A2

Problem: Show that the coherence length can also be expressed as [. = 25 in which

A refers to the equivalent of Av in the wavelength domain.

Now consider an EM-wave that propagates along a vector 7, and mark two positions
P, and P, on this line of propagation at a mutual distance Ris. If Riy < [., there
will be a strong correlation between the EM-fields at P, and P, and as a consequence
interference effects will be possible. In the case of Ris > [., no interference effects
are possible. This effect (i.e. potential interference yes or no) relates to the so-called
longitudinal correlation or longitudinal spatial coherence.

This effect can be clearly demonstrated by considering the wave trains in Young’s in-
terference experiment (see figure 21 ). The diffracted beams emanating from S; and S,
which are coherent radiation sources, cause an interference pattern. However, in the
case of large path differences the interference contrast will diminish, since corresponding
wave packets in the stochastic signal no longer overlap (see figure21: packet H; and
Hy, = packet I} and H,).
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7 Indirect Imaging

If we apply equation (104) to the situation of a quasi-monochromatic point source
S, located on the central axis, the wavelets emanating from two infinitesimal pinholes
Sy and Sy (fictitious case!) will be fully coherent and exactly in phase (aj2(7) = 0)
and constitute two coherent secondary sources. Interference will occur, provided the
OPD between the interfering beams is less than the coherence length | = c7.. With
V' = |32(7)| = 1, the equation for the total irradiance in (104) reduces to:

I = 2I)(1 4 cos¢) = 410cos2§ (108)

yan
I = 4l,cos® | —
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Figure 22: Interferogram displaying the idealized irradiance as a function of the y-
coordinate of the fringes in the observation plane Y. Figure taken from Hecht 1987.

Taking a distance a between the pinholes and assuming that the distance s to the
observation plane Y, is very much larger than a, we can express the path difference
(re — r1) in equation (100) for ¢ in good approximation by:

rg—1r = af = 2y (109)
s

Here y is the linear coordinate in the observation plane ¥, starting from the intersection
of the central axis with this plane and running perpendicular to the fringes. Substituting
¢ in equation (108) by combining (100) and (109) we get an analytical expression for

the interferogram in ¥p:
Ta

I = dlycos* 722 (110)
SA
This (idealized) irradiance versus distance distribution is displayed in figure 22 and
constitutes basically the response of an ideal two-element interferometer to a monochro-
matic point source, i.e. the PSF of an ideal two-element interferometer.

The derivation of the actual PSF for a non-ideal two-element interferometer, that also
accounts for the finite size of the apertures, can be accomplished by utilizing the con-

cept of the pupil function which was introduced for single apertures in section 3. This
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concept will now first be applied to a two-element interferometer, starting with the
assumption of infinitesimal apertures (the ideal case discussed above) and subsequently
by implementing the practical case with finite aperture sizes. Later on in this chapter,
with the introduction of aperture synthesis, this will be extended to the derivation of
the point source response function (PSF) and the optical transfer function (OTF) for
multi-aperture arrays.

7.1 Quasi-monochromatic point source: spatial response func-
tion of a two-element interferometer

Consider two circular apertures with diameter d separated by a baseline direction vector
§. Take the origin of the pupil function P(7) on the baseline vector § symmetrically
positioned between the two apertures. The pupil function P(7) can now be expressed

as: o (T _ 3/2> n <r+s/2> (111)

with II the 2-dimensional circular window function.
Introducing the spatial frequency wvariable ( = 7/\, the pupil function can be

rewritten as:
P =T (%) - (C Z;ﬁ”) (112)

Now if the diameter d of the apertures is assumed to be very much smaller than the
length |3] = D of the baseline vector, i.e. d < D, the pupil function can be approxi-
mated by:

P({) = (¢~ 35/2\) + 6 (C+35/2)) (113)
The optical tranfer function (OTF) for this limiting case of infinitesimal apertures, fol-

lows from the self-convolution of the the function (A/R)P((). Since we have a symmet-
rical pupil function in this case, the self-convolution is identical to the autocorrelation

of (\/R)P(():

OTF = Hy(¢ —( ) [ PEPE -
J— _’, g
_ (E) //pup“plane[a(g —5/2)) + 6 ({" +35/2))] -
0 (¢"=C=5/2x) + 6(¢" = T+ 5/20) dl”
o (A) [60) 4 2o (C ) + Lo (C )] (114)
R 2 2

This OTF shows that the pair of pinholes transmits three principal spatial frequencies:
a DC-component §(0) and two high frequencies related to the length of the baseline

vector § at £5/A. These three spatial frequencies represent a three-point sampling of
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the so-called uv-plane in 2-dimensional frequency(Fourier) space. Note: Full frequency
sampling of the uv-plane will allow complete reconstruction of the brightness distribu-
tion of the celestial source being observed!

=

The PSF follows from FT{H,(¢)}:

5(C) < 1 (2-dimensional sheet!)
5 (5_ —»/)\) o €i2w§-§/A

0(C+35/N) & e
A\’ A\’

— PSF = <§> [2(1 + cos 270 - §'/)\)] =4 (E) cos® mf - §/\ (115)
in which 6 represents the 2-dimensional angular coordinate vector used to
describe the angular distribution of the diffracted image. The attenuation factor (A\/R)?
results from the spherical expansion of the diffracted field in the Fraunhofer limit.

If we assume a light flux I, emanating from each pinhole, we can express the brightness
distribution for the diffracted beam as:

I = 4lycos’ 7 - /A (116)

This is the same equation we derived before with the aid of the interference law for
partially coherent light, but now in a two-dimensional setting with 0 replacing y/s
and § replacing the pinhole distance a in equation (110). We have full constructive
interference:

-3 " nA
[ = 41, for — = =0.+1.+£2. ... 0| = —— 11
o lor )\ TL( 07 ) ) ) — | | |§|COS¢ ( 7)
and full destructive interference:
g-5 1 1 3 5 L (n+HA
I =0 for — = V(= =, =, +—, ... | = —2~ 118
or ST = () (= Epdgtge) o Bl = TEs ()

with cos ¢ the angle between § and the baseline vector 5.

The PSF represents a corrugated sheet with its modulation along the direction of the
baseline vector § and a periodicity (Af)s = \/|3], i.e. a pattern of alternating bright
and dark stripes orthogonal to the direction of the baseline vector s.

In actuality, the apertures have a finite size and the diffracted light by the apertures
is localized, so we have d < S but the approximation by d-functions for infinitesimal
apertures no longer holds! The PSF has now to be derived from the amplitude of the
diffracted field by F'T of the pupil function given in expression 112:

ot d)] o

Applying the shift and scaling theorems from Fourier theory, i.e. if f(z) < F(s) then
fla(z = b)] < (e 2 /a) F(s/a), we find for the amplitude of the diffracted field:

a(|6]) = (%) EW (d/)\)Q] [%@7){)\)] (6*27”'5-5?/2/\ n eZ?ri§-§/2A)
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_ <i> Ew (d/)\)z] [M] cosii- §/d with @—=m6d/)

R ||
- A\t 2120, (j@ )]
PSF = [a(|d)? = 4 2 [—ﬂ (d/Af] 2RUED N o2 . 57a (120)
R) 4 | |
Again we have full constructive interference for:
-3 o nA
— =n(=0,£1,+2,... 0 = 121
and full destructive interference for:
g3 1 1 3 5 S (n+
— = —) (= £=—, £—, +—, ... 0| = 2 122
=t g) (= E A A ) = d) B (122)

[11.00
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Figure 23: PSF of a single circular aperture in pseudo-color as a function of the 2D-
position vector i (A-invariant display).

with cos ¢ the angle between § and the baseline vector 5.
The first two terms in the expression for the PSF give the normalisation for |# | = 0. The
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Figure 24: PSF of a two-element interferometer in pseudo-color as a function of the
2D-position vector @ (N-invariant display). The aperture diameter d equals 25 meters,
the length of the baseline vector |S| is chosen to be 14 meter.

1

Figure 25: Double beam interference fringes showing the modulation effect of diffraction
by the aperture of a single pinhole. Figure taken from Hecht 1987.

other terms represent a corrugated 2-dimensional Airy brightness distribution, intensity-
modulated along the direction of the baseline vector § with periodicity (Af)s = \/|3],
i.e. a pattern of alternating bright and dark annuli at a pitch determined by (Af)y =
1.220\/d, 2.233)\/d, 3.238)\/d, ... of the individual telescope mirrors as shown in figure
23 in pseudo-color superimposed by periodic drop-outs in brightness orthogonal to the
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direction of the baseline vector § at a pitch determined by (Af)s = A/|§|. This cor-
rugated 2-dimensional Airy brightness distribution is also displayed (A-invariant) in
pseudo-color code as a function of the 2-D position vector « in figure 24.

A typical one-dimensional cross-section along u, = 0 of the central part of the interfer-
ogram 24 is sketched in figure 25. Note that the visibilities in both figure 22 and in
figure 25 are equal to one, because I,,;, = 0.

It can be shown that |712(7)| equals one for all values of 7 and any pair of spatial points,
if and only if the radiation field is strictly monochromatic, in practice such a situation is
obviously unattainable ! Furthermore, a non-zero radiation field for which |J12(7)| = 0
for all values of 7 and any pair of spatial points cannot exist in free space either.

7.2 Quasi-monochromatic extended source: spatial or lateral
coherence

Spatial coherence (also: lateral coherence or lateral correlation) has to do with the
spatial extent of the radiation source.

Problem: Prove that for 7 < 7.
F12(T) = F12(0)€>™07 (123)

with |912(7)| = |%12(0)| and a fized phase difference a19(7) = 2w1y7, 1y represents the
average frequency of the wave carrier.

In the following treatment of spatial coherence, it is implicitly assumed that the fre-
quency bandwidth of the radiation source is suffiently narrow that the comparison be-
tween two points with respect to spatial coherence occurs at times differing by At < 7.

Query What is the quantitative relation between the brightness distribution of the
spatially extended radiation source and the resulting phase correlation between two
positions in the radiation field?

Approach Consider again Young’s experiment for the case that the radiation source
S is extended and illuminates the pinholes S; and Sy (actually shown in figure 18). In
the observers plane X, the interference is given by the expectation value of the prod-
uct Ey(t)E;(t) = B{E,(t)E;(t)} = ['12(0) with the subscripts 1 and 2 referring to the
positions P, and P, in the Y-plane. If E; and E, are uncorrelated, then |T'y5(0)| = 0.

In the case of full correlation |95 (: %) = 1, for partial correlation we have

0< |’?12(0)| < 1.

The extended source in Young’s experiment is a collection of non-coherent infinitesimal
radiators, this obviously reduces the contrast in the interferogram. This contrast can
be observed and is described by the afore mentioned Visibility function V:

Inaz — I
V — max man — |~ 0 124
T = i (0) (124)
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. (a)

Figure 26: Relating Y12(0) to the brightness distribution of an extended radiation source
S: configuration for demonstrating the Van Cittert-Zernike theorem. Figure taken from
Hecht 1987.

7.3 The Van Cittert-Zernike theorem

So how can we now relate v15(0) (or I';2(0)) to the brightness distribution of the ex-
tended radiation source S?

This can be done in the following way (see figure 26). Locate S, a QM-incoherent source,
in a plane o, with an intensity distribution /(y, z). Consider next the observation plane
Y. parallel to o, [ is perpendicular to both planes (coincident with the X-axis) con-
necting the centre of the extended source (y = 0,z = 0) to the zero reference in X
(Y =0,Z =0). Select two positions P, and P». The objective is to describe the value
of 712(0) in this plane, i.e. the coherence of the radiation field in ¥. Consider further-
more a small (infinitesimal) radiation element dS in the source at distances R; and Ry
from P, and P, respectivily. Suppose now that S is not a source but an aperture of
identical size and shape, and suppose that I(y, z) is not a description of the irradiance
(or intensity distribution) but, instead, its functional form corresponds to the field dis-
tribution across that aperture. In other words imagine that there is a transparancy at
the aperture with amplitude transmission characteristics that correspond functionally
to the irradiance distribution I(y, z). Furthermore, imagine that the aperture is illumi-
nated by a spherical wave converging towards the fixed point P, so that a diffraction
pattern will result centered at P,. This diffracted field distribution, normalised to unity
at Py, is everywhere (e.g. at P;) equal to the value of 715(0) at that point. This is the
Van Cittert-Zernike theorem.

In the limit that R; and R, are much larger than the source diameter and the relevant
part of the ¥-plane we have the equivalent of Fraunhofer diffraction, this condition is
practically always satisfied for astronomical observations. In that case, the van Cittert-
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Zernike theorem can be expressed mathematically as:
0= [ [ 1@)ea (125)

() = A2 / /2-1 P(Pe = ar (126)

1(€) is the intensity distribution of the extended radiation source as a function of a
unit direction vector €} as seen from the observation plane . Taking the centre of the
extended radiation source S as the zero-reference for ) (coincident with the central
axis [ in figure (26)) and assuming a relativily small angular extent of the source we
can write I(Q) = 1(6,,0,) and Q) = df,de,, where 0, and 6, represent two orthogonal
angular coordinate axes across the source starting from the zero-reference of Q.

['(7) is the coherence function in the X-plane, the vector 7 represents an arbitrary
baseline 7(X,Y’) in this plane with di" = dY'dZ (in the above example P, P, = 7'p, —7'p,).
Expressions (125) and (126) for I'(7) and I($}) show that they are linked through a
Fourier transform, except for the scaling with the wavelength A. This scaling might be
perceived as a ”true” Fourier transform with the conjugate variables Q) and /A, i.e. by
expressing 7 in units of the wavelength A\, writing the van Cittert-Zernike theorem as
the Fourier pair:

I1(Q) < D(7/\) (127)

The complex spatial degree of coherence, 7(7), follows from:

5 = —0 (125)
J Jousee T(€2)dS2
i.e. by normalising on the total source intensity.
Note: Although the extended source S is spatially incoherent, there still exists a par-
tially correlated radiation field at e.g. positions P, and P, since all individual source
elements contribute to a specific location P in the X-plane.

For a derivation of the Van Cittert-Zernike relations, consider the geometry given in
figure 27.

The observation plane ¥ contains the baseline vector (Y, Z) and is perpendicular to
the vector pointing at the centre of the radiation source. The angular coordinates 6,
and 6, across the source (see above) correspond to the linear coordinates of the unit
direction vector Q(QX, Qy,Qy), i.e. the direction cosines of Q relative to the X,Y,Z
coordinate system (Q3 +Q% + Q% = 1). The spatial coherence of the EM-field between
the two positions 1 (for convenience chosen in the origin) and 2 is the outcome of a
correlator device that produces the output E {E1 (t)E3 (t)}

In reality positions 1 and 2 are not point like, they represent radio antennae or optical
reflectors, we shall come back to this later. From the geometry displayed in figure 27,
regarding the Van Cittert-Zernike relations, we can note the following:

= If I(Q) = I,6(9), i.e. a point source on the X-axis, the Van Cittert-Zernike relation
yields |[(7)| = Iy and |5(7)] = 1: a plane wave hits the full Y Z-plane everywhere at
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Figure 27: Van Cittert Zernike relation: reference geometry.

the same time, full coherence is preserved (by definition) on a plane wave front.
= Next, let us consider an infinitesimal source element in the direction Qy = I;d (2 —
). The projection of 2y on the ¥—plane is (Qy, Q7). There will now be a differ-

ence in path length between positions 1 and 2 given by the projection of 7 on QO, ie.
7.y = QY +QzZ. Then:

5 5 iy Q.7 5 i 2mifly .7
Bi(t) = By(t)e” o) _ Eo(t)e(2 o) (129)
E5(t) = Ey(t)e 2mivot (130)
Therefore: s s
B{E (B0} = E{| B0} ™3 = I(Gy)e ™ (131)



Integration over the full source extent(straight forward integration, since all source
elements are spatially uncorrelated) yields:

o) = / / Lo(§)e2 0773 (132)

S Lrpee To () €292 463
f fsource IO(Q)dQ

The meaning of this relationship is, in physical terms, that T'(7) at a certain point rep-
resents a single Fourier component (with baseline 7) of the intensity distribution of the
source with strength I'(7)d7. A short baseline (small |7]) corresponds to a low frequency
(spatial frequency!) component in the brightness distribution 1(6,,6,), i.e. coarse struc-
ture, large values of || correspond to fine structure in I(6,,6,). The diffraction limited
resolution in aperture synthesis corresponds to:

() = (133)

A

|’Fma:1:| - Lmam = emm - T
max

(134)

The factor 2 in the denominator of the expression for 6,,;, follows from the rotation
symmetry in aperture synthesis.

%12(0) * y
+b/2 — ?9 4\

=b/2

S
~
¥

- : (b)

Figure 28: The coherence function 412(0) for a uniform slit source. Figure taken from
Hecht 1987.

Example Consider a one dimensional case. This can be done by taking the slit
source of uniform intensity shown in figure 28 | slit width b and running coordinate &,
the observation plane ¥, running coordinate ¥, is located at large distance [ from the slit
source (i.e. the Fraunhofer limit is applicable). The source function can be expressed

as the window function II (%), in angular equivalent II (%), with By = b/l
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Application of the Van Cittert-Zernike theorem I(€2) < [(7/)) yields:

II (%) & Posinc (%ﬁo) = [psinc (‘K—?) (135)

with sinc(z) = (%) The modulus of the normalised complex coherence function
becomes:
Bysinc4l

V] yb
Bo

sincﬁ =V = Visibility (136)

7 (y)l =

Note that:

e FEnlarging b with a factor 2, shrinks the coherence function with the same factor.
This is of course a direct consequence of the scaling law under Fourier transform.

e The width of the coherence function follows from: (y%) ~l=y= (/3—’\0) If the
radiation source exhibitis a smooth brightness distribution over the angle 5y, = A
radians, as is the case with the slit source, then 7(y) also displays a smooth

distribution over a distance of \/A meters.

e If the brightness structure of a radiation source covers a wide range of angular
scales, say from a largest angular scale A to a smallest angular scale ¢ (in radians),
then the spatial coherence function shows a finest detail of A/A and a maximum
extent of &~ A/ in meters.

7.4 Etendue of coherence

Consider the two-dimensional case of a circular source of uniform intensity with an
angular diameter #,, the source brightness distribution can then be described as a
circular two-dimensional window function: I(Q) = II (%). To compute the complex
degree of coherence in the observation plane X take again two positions, position 1 in
the centre (origin, as before) and position 2 at a distance p from this centre point.
Applying the van Cittert-Zernike theorem, we find for I'(p):

(95/2)J1 (ﬂ-gsp/)‘)
p/A

where J; represents the Bessel function of the first kind. Normalisation to the source
brightness, through division by (76?)/4, yields the expression for the complex degree of
coherence:

I (;) s (p/N) = (137)

B 2J1(mOsp/N)
— 29\ TsP/ 7 1
o) = 2 (139)
The modulus of the complex degree of coherence is therefore:
- 2J1 (’LL)
o = 2 (139)
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with the argument of the Bessel function u = wf;p/\. We can derive the extent of
the coherence in the observation plane ¥ by evaluating Ji(u). If we take u = 2,
|7(p)| = Ji(2) = 0.577, i.e. the coherence in ¥ remains significant for v < 2, or
p < 2X\/(mfs). The area S in ¥ over which the coherence remains significant equals
7p® = 4\?/(76?). In this expression, m0%/4 equals the solid angle €2,,,... subtended by
the radiation source. Significant coherence will thus exist if the following condition is
satisfied:

€ = S < N2 (140)

The condition € = SO ... = A? is called the Etendue of Coherence, to be fulfilled if
coherent detection is required!

Example Consider a red giant star, of radius 7o = 1.5 x 10'! meter, at a distance of
10 parsec. For this object 8, = 107% radians. If this object is observed at A = 0.5um,
the value of the coherence radius p, on earth, on a screen normal to the incident beam
is p = 2)\/(76) = 32 cm. In the infrared, at A = 25um, the radius p is increased fifty
fold to &~ 15 meter. In the radio domain, say at A = 6 cm, p ~ 35 km.

In general, good coherence means a Visibility of 0.88 or better. For a uniform circular
source this occurs for u = 1, that is when p = 0.32A\/6. If we consider a narrow-
bandwidth uniform radiation source at a distance R away, we have

p=0.32(\R)/D (141)

This expression is very convenient to quickly estimate the required physical parameters
in an interference or diffraction experiment. For example, if we put a red filter over a
1-mm-diameter disk-shaped flashlight source and stand back 20 meters from it, then
p = 3.8 mm, where the mean wavelength is taken at 600 nm. This means that a set of
apertures spaced at about 4 mm or less should produce clear fringes. Evidently the area
of coherence increases with the distance R, this is why one can always find a distant
bright street light to use as a convenient source.

Important: Remember that throughout the treatment of spatial coherence it was
assumed that the comparison between the two points occurs at times differing by a
At < 7. If this condition is not fulfilled, for example because the frequency bandwidth
of the radiation source is too large, interferometric measurements will not be possible
(see section on temporal coherence). Frequency filtering will then be required to reduce
the bandwidth of the source signal, i.e. make it more quasi-monochromatic.
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8 Aperture synthesis

8.1 Telescope elements of finite size

As already stated, the positions 1 and 2 in the observation plane ¥ are in practise not
pointlike, but encompass a telescope element of finite size, say a radio dish of 25 meter
diameter. This dish has then a diffraction sized beam of \/D(= 25 meter). In that
case the Van Cittert-Zernike relation needs to be "weighted” with the telescope element
(single dish) transfer function H (). For a circular dish antenna H((3) is almost the
Airy brightness function, well known from the diffraction of a circular aperture. The
Van Cittert-Zernike relations now become:

'(7) = / / IS H( 3)e N 4 (142)

[(F)H(F) = A2 / /z [ (7)== g (143)

The field of view scales with A\/D, e.g. if A decreases the synthesis resolution improves
but the field of view reduces proportionally!

So, in aperture synthesis the incoming beams from antenna dish 1 and antenna dish 2
are fed into a correlator (multiplier) that produces as output the product E(t)E;(t).
This output is subsequently fed into an integrator/averager that produces the expecta-
tion value E {El (t)E;(t)} = I'(7). By applying the Fourier transform given in (143),
and correcting for the beam profile of the single dish H (Q), the source brightness dis-
tribution I(€3) can be reconstructed.

Important: Indirect imaging with an aperture synthesis system is limited to measur-
ing image details within the single pizel defined by the beam profile of an individual
telescope element, i.e. a single dish!

8.2 Quasi-monochromatic point source: spatial response func-
tion (PSF) and optical tranfer function (OTF) of a multi-
element interferometer

The pupil function of a linear array comprising N circular apertures with diameter
d, aligned along a baseline direction b (unit vector) and equally spaced at a distance

- B9 o)

nfifenn D Eafen D) o

Applying the shift and scaling theorems from Fourier theory, i.e. if f(z) < F(s) then
fla(z —b)] & (e‘ZWibs/a) F(s/a), we find for the amplitude of the diffracted field:

—

P(C) =

> | wy

ul >

Va)
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js)

(|§|) = (%) Eﬂ(d/)\)ﬂ {%@7){)‘)} . [1 + e—i(Zw@é‘/A) 4 (e—i(2w§.§/,\))2 I
e (ei(%@-ﬁ/x))]‘“]

- (8) ][5 oy

The sum of the geometric series of N complex exponentials, accomodating the accu-
mulating phase shifts introduced by the addition of each subsequent telescope element
equals:

S (e—i(2W§-§/A))n — e INCRPSY — 1

n=0 (&

_iN(2x0-5 —iN(27w0-5/2)\) _ LiN(270-5/2x . >

I N(2 ﬂe /2)) (e ﬂ/ ) — e (H / )) N e smN(TH-S/)\) (146)
e—i(2r0-5/2)) (e—i(27r0-§'/2/\) _ ei(27r0-§/2)\)) sin(76 - 3/))

—i(2m0-5/2) _ 1

The PSF for the diffracted intensity distribution follows from the relation
PSE = a(|0]) - a*(|0]):

PSF — (%)2Ew(d/wr[2J1|9’|L7|)rs§i§¥§;$i) with @ =xfd/\ (147)

For N =1, we recover the Airy brightness function for a single circular aperture, for
N =2 (Michelson) we have sin? N(@-§/d)/ sin?(@-5/d) = [2sin(@ - §/d) cos(i - §/d)]* /
sin?(@ - §/d) = 4cos?(ii - §/d), commensurate with expression (120).

For N apertures, maximum constructive interference occurs for sin N (76 - §/))/
sin(rd - §/\) = N, that is when:

nA
|5] cos ¢

5.2 )
Ts =n(=0,+1,42,...) — 0] = (148)

These so-called principal maxima are apparently found at the same |§|—locations, re-
gardless of the value of N > 2.

Minima, of zero flux density, exist whenever sin N (mf - §/))/sin(xf - §/A) = 0, i.e.
for:
b5 1,23 N1 N+L o
A N N N N N
- nA
= || = —=——, f =4+1,4+2,... but EN (k=0,£1,£2,... (149
| | N|§»‘| COSQS, Or n ? ) u n% ( ) ) ) ( )

with cos ¢ the angle between § and the baseline vector 3.
Between consecutive principal maxima there will therefore be N-1 minima. Since
between each pair of minima there will have to be a subsidiary maximum, i.e. a
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Figure 29: PSF of a 10-element interferometer with circular apertures in pseudo-color
as a function of the 2D-position vector i@ (A-invariant display).

total of N-2 subsidiary maxima between consecutive principal maxima. The first two
terms in the expression for the PSE' give the normalisation for |§ | = 0. The other terms
represent a corrugated 2-dimensional Airy brightness distribution, intensity-modulated
along the direction of the baseline vector § with a periodicity (Af)s = A/|5] of narrow
bright principal maxima and with a periodicity (Af)ys = A/(N|35]) of narrow weak
subsidiary maxima, interleaved with zero-intensity minima.

The corrugated 2-dimensional Airy brightness distribution for N = 10, yet again for
d = 25 meters and |5] = 144 meters, is displayed (A-invariant) in pseudo-color code
as a function of the 2D-position vector « in figure 29. Also shown, in figure 30, is a
magnification of the central part of the PSF that more clearly shows the interleaved
subsidiary maxima and minima. A cross-section for u, = 0 of the central part of the
interferogram, delineating the profiles of the sharply peaked principal maxima and the
adjacent series of subsidiary maxima and minima, is presented in figure 31.

68



Figure 30: Magnification of the central part of figure 29, clearly showing the locations
of the subsidiary maxima and minima.

The OTF for an array of N circular apertures can be obtained from the autocorrelation
of the pupil function given in expression (144):

e = (3) [Efa (€ - [Efa D)

(A) Y Al ) (150)

n=0 m=0

in which A, represents an element of the Nx N autocorrelation matrix A, that is given
by:

A sy = [ {d (c —n- A)} { (c ~{-m- )}dc (151)

Values A,,, # 0 are given by Chinese-hat functions as derived for a single circular
aperture in section 3. However in the multi aperture case here, we have a series of prin-
cipal maxima in the H,(C,3/)\) plane ( = the uv-plane representing 2-dimensional
frequency(Fourier) space) at spatlal frequency values:

g

Coaw = C— k-3 with k=n—m=0,£1L,£2,. £(N-2),£(N-1) (152

Hence we can replace A,,, by Ay, where the single index k refers to the diagonals of
the autocorrelation matrix A: k = 0 refers to the main diagonal, & = %1 to the two
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Figure 31: Cross-section of the central part of the PSF' for a 10-element interferometer,
delineating the brightness profiles of the principal maxima and the subsidiary mazxima
and minima.

diagonals contiguous to the main diagonal and so on. The analytical expression for
the diagonal terms A, can now be computed in the same way as for a single circular
aperture, however in this case we need vector notation:

—

> §
k-2
¢ A

—

> §
k.2
¢ A

—

> §
k-2
¢ A

M

=
—
g >

s (Bl ) (e 5D o (2 2

which we rewrite in terms of Chinese-hat functions C(C — k - §/A) normalised to unit
aperture area:

Ay = %w (;)2 C(C— k- 5/)) (154)
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The sum over all elements of matrix A can now be obtained from:
N-1N-1 N-1

Z Z Apm = Aga Z (N - |k|)ck(< — k- §/A) (155)
n=0 m=0 k;:—(N—l)
N-1 N—-1
Sum check: > (N—|k)=N+2> (N-k)
k=—(N—1) k=1

:N+%(N—1)[2(2N—2)—2(N—2)]:N+N2—N:N2,

compliant with the required total number of matrix elements! The quantity A,, =
iw(d/ A)? represents the geometrical area of a single telescope element.
Hence, we arrive at the following expression for the OTF of the array:

2 N-1
H\(C,N3/)\) = (%) NA, Y WC@(E —k-3/\) with
k=—(N-1)

ék(g_kg/)‘) =

—

2 Ao
= arccos(—‘(—k-i

= C—k
T d A ¢

C—k

s
A

1

A SN (4 (2 \” a2
)= Gl 5D (- Glersl) )
The geometrical term N Ay, reflects the total geometrical collecting area of the telescope
array (N times the area of a single aperture A,,) and the term (\/R)? accomodates the
attenuation due to the spherical expansion of the wave field.

The OTF for the spatial frequency throughput of the aperture array is described by
a linear array of discrete spatial frequency domains in the uv-plane, characterised by
Chinese-hat functions centered at zero frequency and at multiples of the baseline vec-
tor §/\, that specifies the equidistance (magnitude and direction) between adjacent
apertures. The peak transfer declines linearly with increasing mutual separation be-
tween aperture elements relative to the zero-frequency response, i.e. proportional to
(N —|k|)/N for spatial frequencies centered around k-§/\. This can be easily explained
by considering the monotonously decreasing number of aperture elements, and hence
the associated array collecting power, involved at larger baseline values. For the maxi-
mum available baseline (N — 1)§/A this throughput reduction amounts to 1/N.

Intermezzo: Verify that Hy(C, N§/\) < PSF(N-apertures).

Proof: Application of the shift theorem yields for the Fourier transform of the single-
aperture-weighted (Ay, = 37 (d/)\)?) Chinese-hat function at baseline position k - §/\
the following expression for its FT:

1 - 1 2125(1@)1° _incondis
TN G k-5 & hw (d/)\)Z} [w] ik (052 (158)
u
Putting = = 270 - 5/, the Fourier transform of (156) can be expressed as:
- ML el [200ED]
FT |H\((,NS/\)| = | = -7 (d/A\ —
m@ ] = (5) [ 24
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N-1 N-1 ) N-1 ) N-1 )
-[N <1+ Yot Y e—””> — (Z ke 4+ Y ke‘”””)l (159)
1 k=1 k=0 k=0

k=

The first two sums of (159)involve simple geometric series and can be easily calculated,
Le.:

N ol (6i(N*1)w _ 1) pi(N=Y)z _ giz/2
Z et = — = — and:
= e —1 2isin (z/2)

— —i —i(N-1)z _ —i(N=1)z —ix
Nle—ikx:elx(el x 1):_ e iN=3)z _ o—iz/2
poet emir — 1 2isin (x/2)

Hence, after some rearrangement of the complex exponentials, this results in a real
function:

= ikx = —ikx \ __ sin [(QN_ 1)(@‘/2)]
N<1+ kz e 4 kgl e ) =N sin (z/2) (160)

=1

The third and the fourth sum in equation (159) involve a combination of an arithmetic
and a geometric series (a so-called arithmetico-geometric series). These sums can be
simply derived by differentation of the expression for the sum of the geometric series,
resulting in:

N—1 - .
) N i(N-1x _ N —1 iNT 1
ke'kr — ¢ ,(2 e and:
= 4sin®(x/2)
]il " ke Nefi(Nfl)m - (N - 1) efz'Nw -1
e =
= 4sin®(z/2)

Straightforward recombination of the complex exponentials again results in a (trigono-
metric) real function:

N ity . Ncos(N — 1)z — (N —1 Nz —1
Z kezkm + Z kefzkw — COS( ):I“ ' 2( )COS T (161)
k=0 k=0 2sin(z/2)

Combining expressions (160) and (161), we arrive at :

N-1 N-1 ) N-1 ) N-1 )
[N (1 + Z ezkw + Z ezk$> o (Z kezkm + Z kezkm)] —
k=1 k=1 k=0 k=0

_ 2Nsin(z/2)sin(N — 3)o — Ncos(N — 1)z 4+ (N —1)cosNz +1

2 sin?(2/2)
B Nsinxsin Nx + Ncoszcos Nz — cos No — Ncoszcos Nx — Nsinzsin No + 1 B
B 2sin*(x/2) B

_ 1—cosNz _ 2sin*(Nz/2)
~ 2sin?(2/2)  2sin®(z/2)

(162)

Substituting z = 270 - /A = 2( - §/d), yields:

2J1(|ﬁ|)] ? sin? N(ii - §/d)

FT [HA\(C, N5/N)| = (%)2 Eﬁ (d/)\)Zrl ST T Q.E.D. (163)

||
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Note: The modulation term sin® N(i - 5/d)/sin?(@ - 5/d) can be simplified for low
N-values:

=1 for N=1
= dcos®(i - §/d) for N=2
= [2cos2(@ - §/d) +1)°  for N=3
= 8cos?2(ii - 5/d) - [1 4+ cos 2(ii - §/d)]  for N=4 (164)

End Intermezzo

8.3 Earth Rotation Aperture Synthesis (ERAS)

By employing the rotation of the earth, the baseline vectors k - §/A of the linear N-
element interferometer array, as defined in the previous section, will scan the YZ-plane
displayed in figure (27) in case the X-axis is lined up with the North polar axis, i.e. in
this particular geometry the X-coordinate of the baseline vectors is zero. The principal
maxima or ‘grating lobes’ in the PSF of a multiple aperture array, as computed in the
preceding section, will now manifest themselves as concentric annuli around a central
source peak at angular distances k- A/|5|. If the circular scans in the YZ-plane are too
widely spaced, i.e. if |§| is larger than the single dish diameter, the (2-dimensional)
Nyquist criterion is not respected and undersampling of the spatial frequency uv-plane
(=YZ-plane) occurs. Consequently, the grating lobes will show up within the field of
view defined by the single-dish beam profile. This can be avoided by decreasing the
sampling distance |§|. In the following section we shall now demonstrate these notions
with the concrete configuration of the Westerbork Radio Synthesis Telescope.

8.4 The Westerbork Radio Synthesis Telescope (WSRT)

a+2664 m
1368 m
1224 m
0 1 2 3 4 5 7 8 9 AB CD
[ERRRRRERE i
m m

Figure 32: Configuration of the Westerbork Radio Synthesis Telescope.

The WSRT consists of 14 parabolic antenna’s, with single dish diameters D of 25 meter.
They are accurately lined up along the East-West direction with an overall length of
~~ 2750 meter. Ten antenna’s (numbers 0 thru 9) are fixed with a mutual distance of
144 meter. The other four antenna’s (A thru D) can be moved collectively with respect
to the fixed array, without altering their mutual distance, i.e. the variable distance
between antenna’s 9 and A can be preselected as a suitable base line increment AL
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(Figure 32).

These 14 antenna’s comprise 40 simultaneously operating interferometers. By employ-
ing the rotation of the earth, the full antenna array is rotated in a plane containing
Westerbork perpendicular to the rotation axis of the earth. This is the YZ-plane intro-
duced in figure 27 that contains all the base line vectors 7. In this particular geometry,
the X component of the base line vectors is zero. This implies that in this case we
are limited to sources near the North polar axis, all single dishes are thus pointed in
that direction. In practise, the standard distance between antenna’s 9 and A equals 72
meters. Consequently, after half a rotation of the earth the YZ-plane is covered with
38 concentric semi-circles with radii ranging from L,,;,, = 72 meters to L., = 2736
meters, with increments of AL = 72 meters. The WSRT-correlators integrate and av-
erage over 10 seconds, this implies sampling of the concentric semi-circles every 1/24
degrees. After 12 hours, half the YZ-plane has been covered. The other half need not
be covered, it can be found by mirroring the first half since I($) is a real function.
The brightness distribution I (Q) can now be reconstructed by Fourier inversion accord-
ing to expression (126). Since we have only obtained samples of the spatial coherence
function f‘(f’), the integral of expression (126) is replaced by a sum. Moreover, one
normally applies in addition a weighting function to get a considerable reduction of the
side lobes, this goes slightly at the expense of the ultimate angular resolution. This is
expressed in terms of a degradation factor a > 1. The simplest form of such a weighting
function is a triangular shaped, circular symmetric, function (i.e. a cone), the attenu-
ation effect on the side lobes is called apodisation. Leaving any constants aside for the
moment, , we obtain I(():

1) = S w()D(F)e =5 (165)

with w(7%) the weighting (apodisation) function.
Expression (165) yields a radio map on a discrete grid in Q—space. The cell size of this
grid (pitch) is chosen in such a way that oversampling of the spatial resolution of the
array is achieved, so that contour plots can be constructed.
Note: The reconstructed [ (Q) needs to be corrected for the single dish response func-
tion H(Q), see equation (143).
If we consider half an earth rotation, the sum in (165) involves &~ 165.000 numbers (i.e.
38 semi-circles, 12x60x6 correlator samples/semi-circle). This sum will have to be taken
for roughly the same number of image points in Q—space. This task is accomplished by
using the Fast Fourier Transform algorithm.

The Point Spread Function (PSF):
Taking a point source S as the quasi monochromatic radiation source, the spatial fre-
quency response function of the rotated interferometer array in the uv-plane can be
obtained explicitly from expression (156) for the OTF by implementing the geome-
try of concentric scans. In that case, owing to the circular symmetry, the vectorial
expression H A(E ,N5/\) can be replaced by a, radially symmetric, scalar expression
Hy(p, NAL/)), with the scalar p the (A-normalised) spatial frequency variable (= | C|)
and AL the baseline increment of the array (= | §|). Although an exact expression for
the scalar function Hy(p, NAL/)) would involve integration along one coordinate of the
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Figure 33: A reconstructed ”dirty” radio map showing central source peaks and grating
lobes of increasing order.

two-dimensional Chinese-hat function, a straightforward one-dimensional cross-section
constitutes an adequate approximation. Hence we can write:

2 N-1
N — .
H)\(p,NAL/)\) = % NAsa Z % Ck(p—kAL/)\) (166)
k=—(N-1)

The PSF derives from the Fourier transform of Hy(p, NAL/)). Following the approach
outlined in the intermezzo above, we arrive at:

A\ 212J,(u)]? sin® N(uAL/D)

PSForas = | 5 [1 C u sin?(uAL/D) (167)

R) 1"
where we have again utilised the reduced angular variable u = 70 D/\, 0 represents the,
radially symmetric, diffraction angle.
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Evaluation of expression (167) reveals two main image components:

A Central Peak:

This distribution is rather similar to the Airy brightness pattern, with a typical breadth,
i.e. spatial resolution:

A, radians (168)

2Lma:r
with 2L,,,, the maximum diameter of the array in the YZ-plane. In the derivation of
(167), no weighting function was applied. If a weighting function is applied for efficient
apodisation, expression (168) needs to be multiplied by a degradation factor « =1 — 1.5
to accomodate the loss in ultimate angular resolution. Moreover, moving outward, the
sidelobes in (167) will progressively be reduced depending on the particular choice of
the weighting function.
Concentric Grating Lobes:
The angular distances of these annuli from the central peak follow from the location of
the principal mazima given by the modulation term sin® N(uAL/D)/sin*(uAL/D) in
expression (167). For an N-element array with increment AL, these angular positions

are given by:
A A A

ngtmg - E, QE, ..... y (N — 1)@

A typical source field containing these grating lobes is shown in figure (33).

It is clear from this figure that severe undersampling of the YZ-plane has occurred since
the grating lobes are well within the field of view. For the WSRT, one way to remedy
these imperfections in the PSF is by decreasing the distance between antenna’s 9 and A
during the second half rotation of the earth. Combined with the first half rotation, a 36
meter increment coverage is achieved at the expense of doubling the observation time
from 12 to 24 hours. In the same way, combining four half rotations in 48 hours, we can
increase the coverage to 18 meter increments. Since the single dish diameter D equals
25 meter, no empty space is now left in the YZ-plane, the undersampling is corrected
and the grating lobes have been moved outside the field of view defined by the single
dish beam profile. This is summarized in the following tables that show exposure times,
maximum baselines and increments, and at four different radio wavelengths single dish
fields of view, central peak angular resolutions for o = 1.5, and angular distances of the
grating lobes.

(169)

Exposure(hours) | a (meter) | Ly, (meter) | AL (meter) | L. (meter)
1x12 72 72 72 2736
2x12 36,72 36 36 2736
4x12 36,54,72,90 36 18 92754

X (cm) 6 | 21 | 49 | 02
f (MHz) 5000 | 1420 | 612 | 326
Single dish pixel A\/D (arcsec) 500 | 1800 | 4200 | 7600
Resolution aA\/(2L.:) (arcsec) 3 | 115 ] 27 50
Grating lobes A\/(AL =72 m) (arcsec) | 172 | 7600 | 1405 | 2640
Grating lobes A/(AL = 36 m) (arcsec) | 344 | 1205 | 2810 | 5270
Grating lobes A/(AL = 18 m) (arcsec) | 688 | 2410 | 5620 | 10540
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Figure 34: Position of the concentric grating rings in the PSF for various sampling
densities of the uv-plane. FOV: =\/D < 0, , < A\/D (=7 < u,,, < m). Upper left:
AL/D = 144/25, upper right: AL/D = 72/25, lower left: AL/D = 36/25, lower right:
AL/D =18/25. The insert in the lower right panel shows a blow-up of the central peak
image, displaying the circular subsidiary maxima and minima.

As is clear from these tables, the grating lobes can only be moved outside the single
dish pixel if the empty spaces between the samplings are filled in, the table shows that
this is obviously the case for AL = 18 m: for example the first order grating lobe
at 6 centimeters is situated at an angular distance of 688 arcseconds from the centre,
whereas a single dish pixel A\/D equals 500 arcseconds.

Figure (34) stipulates the outward movement of the grating lobes for a WSRT-type
configuration by taking D = 25 meter and by reducing the baseline increment values
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Figure 35: Applying the CLEAN method for improving dirty radio maps. This is a
radio map taken at A = 50 c¢m, with a AL = 36 meter increment. Left panel before
CLEAN, right panel after CLEAN.

from AL=144 to 72, 36 and 18 meters respectively.

The problem of incomplete coverage of the YZ-plane is that the values of the coherence
function f‘(F) are set to zero in the empty spaces, which will certainly give an erroneous
result. This can be circumvented by employing interpolation between the sampling
circles based on certain assumptions regarding the complexity (or rather simplicity)
of the brightness distribution of the sky region observed. Requirement is that the
reconstructed (contour) map always remains consistent with the measurements at the
grid points! Two mathematical techniques are often applied to get rid of the grating
lobes: the CLEAN and MEM (Maximum Entropy Method) techniques. Obviously this
is potentially much more efficient than elongating the observation times by a factor
two or four, as was done in the above table. We shall not discuss these particular
algorithms in any detail here, however the MEM technique will, in a more general
fashion, be treated later on in this course. The improvement that can be achieved by
applying the CLEAN method to a dirty radio map is displayed in figure (35), the left
panel shows a dirty radio map at a wavelength of 50 cm, the right panel shows the
"cleaned” map after applying the CLEAN process.

8.5 Maximum allowable bandwidth of a quasi-monochromatic
source

As was already stated, the coherence length of the radiation source needs to be larger
than the maximum path length difference at the longest baseline present in the inter-
ferometer array. This imposes a maximum frequency bandwidth for the observation of
the radiation source, which is disadvantageous since the noise in the image decreases
with \/AvT,ps. The largest angle of incidence equals half the field of view, i.e. A/2D,
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with D the single dish diameter. At this angle, the coherence length compliant with
the largest baseline needs to obey:

A
L —L 1
coh > 2D max ( 70)
This translates in the following condition for the allowable frequency bandwidth:
Av 2D
= 171
0] < Lmam ( )

In the case of the WRST the ratio 2D/ L,,q. &~ 1/50. At a wavelength of 21 centimeters
(= 1400 MHz), this yields Av < 28 MHz. This corresponds to a coherence length of
more than 10 meters. In practise a value of Ar ~ 10 MHz is chosen, which corresponds
to a coherence length of about 30 meters.

If one wishes to increase the bandwidth in order to improve sensitivity, than division
in frequency subbands is required. For instance, if one observes at 21 centimeters and
Av = 80 MHz is required, this bandwidth is subdivided into eight 10 MHz subbands
by filters. The individual subband maps are subsequently scaled (with ) and added.
This then yields the required signal to noise ratio.

8.6 The general case: arbitrary baselines and a field of view
in arbitrary direction

In deriving the Van Cittert-Zernike relations, we took the baseline vector 7(Y, Z) in a
plane perpendicular to the vector pointing at the centre of the radiation source. In the
WSRT case we were, therefore, limited to consider a field of view near the north polar
direction.

Consider now an extended source in a plane ¢ in an arbitrary direction, an observation
plane ¥ parallel to o, the centre of the radiation source is located on the X-axis, which
is perpendicular to both planes. We designate the intersection point of the X-axis
with the Y-plane as the position of antenna 1 (for convenience, as we did before) and
position antenna 2 at arbitrary coordinates (X, Y, Z). This defines an arbitrary baseline
vector 7(X, Y, Z). During the earth rotation the antenna beams are kept pointed at the
source direction Q, i.e. this vector does not move, however the tip of the baseline vector
7(X,Y, Z) describes a trajectory X (t),Y (t),Z(t) in space. Consider again radiation
incident on the Y-plane parallel to the X-axis, like in the case of the original Van
Cittert-Zernike derivation. In that case the path difference at positions 1 and 2 was
zero, since the baseline was located in the Y, Z-plane, now the path difference is given by
X(t). To restore maximum coherence between positions 1 and 2, this path difference
can be compensated by delaying the signal of antenna 2 by X (t)/¢, in other words
radiation from direction X arrives at the same time at both inputs of the correlator.
Taking the centre of the source as the zero reference point for the source direction
vector in the X, Y, Z reference frame, we can select an infinitesimal source element in
the direction QU(QXO, Qyo, Qz0) (unit vector) = Igé(ﬁ — QO). The path difference at
the input of the correlator is the projection of the baseline on that unit vector under
subtraction of the compensation X (¢):

F.QO - X == [QY[)Y + QZOZ + (QXO - ].)X] (172)
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If the extent of the radiation source (or the field of view defined by a single antenna
beam) is sufficiently small, the value of the direction cosine Qxg ~ 1,1.e. (Qyo—1)X <
A. In that case the difference in path length, like in the case of the original VanCittert-
Zernike derivation, equals the scalar product of two vectors in the Y Z-plane: the path
difference equals ~ Fp.ﬁg = Oy oY +Qy0Z, with 7, the projection of the baseline vector
on the Y Z-plane and Q{) the projection of the unit direction vector on the Y Z-plane. If

I(€2) represents the brightness distribution over the sky, the VanCittert-Zernike relation
for obtaining the coherence function is now given by:

(%) = / / Io(§)e2mi %7/ 3 (173)

with 7, the projected baseline!

Conclusion: Arbitrary baselines do not change the aperture synthesis technique, except
that the 3D baselines are projected on the observation plane ¥ and become 2D.
Note: the pathlength difference X (¢) changes continually during the rotation of the
earth and, hence, needs continues electronic compensation with an accuracy of a small
fraction of the wavelength A. In practise, for the WSRT, this is accomplished in two
steps: coarse compensation with a delay line and subsequent fine tuning with the aid
of an electronic phase rotator.

At the beginning of the description of earth rotation aperture synthesis, we considered
the radiation source to be located in the direction of the rotation axis. Suppose now
that the extended radiation source (or the single telescope field of view) is located
along a direction vector that makes an angle ¢, with the rotation axis of the earth.
This is then the direction of the X-axis, perpendicular to this axis is the Y Z-plane.
The East-West oriented WSRT baselines physically rotate in a plane perpendicular to
the earth axis, producing concentric circles as described earlier. These concentric circles
now need to be projected on the Y Z-plane, i.e. the observation plane ¥ perpendicular
to the viewing direction of the centre of the source (or the centre of the field of view).
The circles change into ellipses and the coherence function is now sampled on ellipses,
rather then on circles. The major axes of these ellipses remain equal to the physical
length of the WSRT baselines, the minor axes are shortened by cos ¢y. This causes
the point spread function (PSF) to become elliptical as well, the angular resolution
therefore reduces with the lowering of the declination [(7/2) — ¢o]. As a result, celestial
directions along the declination are subject to a broadening of the central peak of the

PSF according to:

al\
PSF = ———— 174
2L,z COS O (174)

Apart from the central peak, the grating lobes are scaled accordingly, this can be clearly
seen in figures (33) and (35). For the WSRT the most extreme case of baseline short-
ening would occur with a source in the equatorial plane (declination 0), no resolution
would be left in one direction. To circumvent this problem, baselines need to contain
always North-South components. This is for example the case with the US VLA (Very
Large Array) aperture synthesis telescope.
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9 High energy imaging

9.1 Grazing incidence telescopes

Wavelengths shortward of ~ 50 nanometer and longer than ~ 0.1 nanometer, i.e. the
regime of extreme-ultraviolet (EUV) and X-radiation, are absorbed by metallic surfaces
at normal incidence, the only way to reflect and focus this radiation is to employ total
reflection, since the refractive index of metals at these wavelenghts is slightly less than
one. We can write the refractive index as:

n=1-6—i8 with 0§ 8<1 (175)

0 being a measure for the reflection and § a measure for the absorption. If we only
consider the real part of n, referring to reflection, we have n = 1—49. Employing Snell’s
law, the critical angle for total reflection follows from:

cosf, = 1—96 — 0, = V2 (176)

where the cosine term can been approximated by the first terms of the Taylor series,
since 0 < 1. Typical values for the critical angle, depending on wavelength and specific
metal(coating), range from 1 to 3 degrees. These small angles imply that focussing
optics for this wavelength range requires very high incidence angles. It is therefore
commonly referred to as grazing incidence optics, the grazing angle constitutes the
angle between the incoming ray and the metal reflecting surface (i.e. the complement
of the angle of incidence). Figure 36 shows the reflection efficiencies €, for several
grazing angles, as a function of wavelength in A-units for gold as the reflection coating
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Figure 36: Reflection efficiencies of gold for several grazing angles as a function of
wavelength (in /f) of the incoming radiation beam. The ordinate scale for the efficiency
e ranges from 0.01 to 1. Figure taken from Giacconi and Gursky 1974.
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Figure 37: Grazing incidence optics: Wolter-1 configuration. Figure taken from Kitchin
1998

deposited on the mirror substrate.

Several grazing incidence telescope configurations have been devised, the most practical
use has been a design by Wolter comprising adjacent annular sections of a paraboloidal
and a hyperboloidal surface irradiated at grazing incidence. This so-called Wolter-I
telescope is displayed in figure 37, the focus of the paraboloid coincides with the focus
of the ”virtual” part of the hyperboloid and the telescope focus is the focal point of the
actual hyperboloidal annulus. Obviously, like in the case of the Cassegrain system, the
hyperboloidal surface acts as a correction element for the large coma error of a single
paraboloid for off-axis radiation. In practise one can obtain resolutions of the order of
1-10 arcseconds over fields of view (FOVs) of several arcminutes. Another design, also
due to Wolter, is shown in figure 38. In this case the grazing incidence rays reflect from
the inner surface of the paraboloidal mirror and, consecutively, from the outer surface
of the hyperboloid. This so-called Wolter-II configuration is occasionally used for soft
X-ray and Extreme Ultraviolet imaging, the typical grazing angles are larger than in the
case of the Wolter-I configuration, however the design can be much more compact. The
location of the foci of both the individual annuli and of the full telescope is indicated
in figure 38. A drawback of grazing incidence optics is the fact that the aperture of
such telescopes is only a thin ring in projection, since only the radiation incident onto
the paraboloidal annulus is transmitted to the focus. In order to increase the effective
area, and hence the sensitivity of the telescope system, several systems with different
radii are nested inside each other in a confocal fashion. This is schematically shown in
figure 39.

It is important to realise that at these short wavelengths it is normally no longer
the diffraction that limits the resolution of the telescope (A/D very small), but rather
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Figure 38: Grazing incidence optics: Wolter-1I configuration. Figure taken from Kitchin
1998.
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Figure 39: Confocal nesting of Wolter-1 telescopes to enlarge the aperture effective area.
Figure taken from Kitchin 1998.

the accuracy of the surface figure such as roundness and profile. Moreover, the micro-
finish of the reflecting surface (i.e. the microscopic surface roughness) plays a dominant
role in the potential quality of the image: a surface with irregularities scatters rather
than reflects the incoming beam, this will show up as "wings” in the PSF that might
contain a substantial fraction of the beam energy. Surface smoothness of the order of
0.1 nanometer has be achieved, providing very high quality X-ray mirrors.

Grazing incidence mirrors can be produced in a variety of ways, either by direct
machining and polishing or by a so-called replication technique. In the latter case a
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thin metal reflective layer is deposited on a highly polished (i.e. X-ray quality) mandrel
of the inverse shape to that required for the mirror. Subsequently electro-deposition of
e.g. nickel onto the mandrel is applied to built up a self-supporting mirror shell. When
the appropriate thickness for the required mechanical integrity of the shell has been
reached, the shell can be separated from the mandrel by thermal shock (cooling).

Grazing incidence mirrors with intrinsically much lower, but nevertheless still very
useful, angular resolution of the order of 1-3 arcminutes can be fabricated from nesting
foil mirrors that approximate the paraboloidal and hyperboloidal surfaces by truncated
conical surfaces. Thin aluminum foil with a lacquer coating to provide the required
smoothness and reflection efficiency has been successfully employed for this purpose,
the conical approximation much reduces the complexity of the fabrication process and
therefore the costs. Obviously, given the mandatory short length of the mirror cones to
retain, at least geometrically, the required resolution, many hundreds of foil shells need

Figure 40: High resolution X-ray image of the Cas A SNR (SN type II) obtained with
the Chandra grazing incidence telescope. The telescope comprises a nest of 4 confocal

Iridium coated Zerodur shells. A Chromium binding layer is applied between the high-Z
Ir-coating and the glass. Credit NASA/Chandra Science Data Centre.
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Figure 41: High resolution image of the historical SNR Tycho (SN type Ia, observed in
1572) obtained with the Chandra X-ray telescope. Credit NASA/Chandra Science Data
Centre.

to be nested to reach a sufficiently large effective aperture!

9.2 Non-focussing optics: beam modulation

If the wavelength of the incident radiation beam becomes smaller than ~ 0.1 nanometer,
it becomes increasingly difficult to use reflection optics. Employing multi-layer coated
mirrors still allows focussing of radiation in selected wavebands down to wavelengths
as short as 0.02 nanometer, but not much further. Therefore, images will have to be
obtained by other means. In the photon energy range where the photo-electric effect is
still dominant, imaging can be accomplished by applying the coded mask technique. In
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Figure 42: Flements of a coded mask telescope. Figure taken from Bleeker in BeppoSAX
2003.

the photon energy range where Compton scattering and pair creation are the dominant
interaction processes, the kinematics of the interaction processes can be used to extract
directional information to built up images. In that case telescope and detecting device
have become one. We shall treat these latter two techniques under Gamma-ray imaging,
and shall first briefly describe the principle of coded mask imaging.

Coded mask imaging is based on an old principle, the Camera Obscura, where a hole
in a mask allows an image to form on a screen. The smaller the hole , the better
the angular resolution, but unavoidably at the expense of the irradiance. Moreover, if
the hole becomes too small, diffraction effects will degrade the resolution. In the X-ray
domain diffraction effects become negligible considering the small wavelengths involved,
and the irradiance level can be enhanced by employing a large number of holes, so that
the transmission of the mask may reach a value of ~ 50 percent. The resulting image
from such a multi-hole mask is a linear superposition of the images produced by each
individual hole. The distribution of the holes needs to be done in such a way that the
brightness distribution of the illuminating celestial source can be reconstructed in an
unambiguous fashion from the measured intensity distribution in the registered image.
The appropriate pattern of holes and stops constitutes a so-called coded mask, this
surface is described by a two-dimensional transmission function M(z, y). If we assume
an extended radiation source S(z,y), the intensity distribution D(z,y) on the detector
can be written as a convolution:

D(z,y) = M(z,y) * S(z,y) + N (177)

with N representing the detector noise.

The working principle of the coded mask camera is displayed in figure 42. To re-
construct the brightness distribution of the extended celestial radiation source, the
image D(x,y) needs to be deconvolved with the transmission function M(z,y) of the
mask. The simplest operation to perform this deconvolution is a two-dimensional cross-
correlation of the mask transmission function with the detector image. Formally, an
estimate of the source distribution, ¥(z,y), can be obtained by applying a decoding
function A(x,y):

Y(z,y) = A(z,y) * D(z,y) = A(z,y) * M(2,y) * S(z,y) + A(z,y) * N (178)
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If the image detector were to be noise free, there should exist a one-to-one correspon-
dence between S and X, hence we require A x M = § (Kronecker delta). Secondly,
the noise distribution should preferably be uniform over the deconvolved image. Mask
patterns M(z, y) that satisfy these two requirements are designated optimal.

Note: It is important to realize that the noise level and distribution in the detector
image depends on the brightness distribution of the sky within the field of view of the
coded mask telescope. FEach source in the sky field observed does not only contribute
to its specific location (i.e. pizel) in the detector image but also to all the other image
pizels. This means that all the radiation sources in the observed sky field contribute to
the noise level of the detector image.

The angular resolution of a coded mask telescope is directly related to the size m, of an
individual mask element and the distance [ between the mask plane and the detector
plane:

00,5 = arctan(m,/l) (179)

This resolution implies a proper sampling by the image detector of the mask element m.,
the Nyquist criterion is amply satisfied for a spatial resolution of the detector d, ~ m,/3.
Usually the size of the mask pattern covers the same area as the image detector and
the sensitivity is not uniform across the whole field of view, being dependent on the
coded fraction of the detector that is illuminated by the mask pattern. Hence, the
characterisation of the field of view of a coded mask telescope can be done along three
coding limits: the fully coded limit, the semi-coded limit and the zero-coded limit. If
the mask has the same size as the image detector and does not comprise repetition of
a (smaller size) basic coding pattern, the field that is fully coded equals zero. The field
of view at half the sensitivity will be equal to the solid angle subtended by the mask
as seen from the image detector. Several coded mask telescopes have been developed
and built for hard X-ray and low-energy gamma-ray detection, e.g. the Dutch-Soviet
coded mask X-ray camera on the Soviet MIR Space Station, the French coded mask
telescope SIGMA onboard the Soviet GRANAT spacecraft, the Dutch-Italian Wide
Field coded mask Cameras on the BeppoSAX satellite and the low-energy Gamma-ray
Imager on the European INTEGRAL Space Observatory. The Wide-Field coded mask
Cameras (WFC) onboard BeppoSAX have been particularly successful during the six
year mission life time of the satellite and have made a crucial contribution to unveiling
the origin of gamma-ray burst sources. The two, anti-parallel, WFCs in BeppoSAX had
a 40x 40 degrees? field of view (FWZR) and an angular resolution 66,.; = 5 arcminutes
with location accuracy (i.e. position resolution, see Chapter 5) of 0.7 arcminutes. The
coded mask comprised a matrix of 256 x256 elements with m, =1 mm. The open
fraction of the mask was chosen from numerous sky simulations to be 0.33 for optimum
signal to noise ratio. The resolution of the position sensitive X-ray image detector was
~ 0.4 mm, i.e. commensurate with the Nyquist requirement on proper sampling.

Figure 43 shows raw image data (left panel) from a sky region close to the Galactic
Centre in terms of a photon intensity map. It is evident from this raw image that the
sky field observed contains two bright point sources, which are directly visible as two
light rectangles in the image arising from mechanical collimation by the tube connecting
the mask with the image detector. No other sources can yet be discerned. The right-
hand panel shows the deconvolved detector image, displaying a host of point sources in
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Figure 43: Left: A BeppoSAX WFC coded mask picture of a sky region near the Galactic
Centre in terms of a raw photon intensity map. The dark bars and stripes reflect the
detector window support structure. Right: the deconvolved detector image showing the

wealth of compact X-ray sources in the Galactic Bulge area. Figure taken from Bleeker
BeppoSAX 2003.

a wide brightness range. All these sources can be simultaneously monitored regarding
their time variability (e.g. transients, bursts, flashes, periodicities) and their spectral
morphology and variability.

9.3 Compton imaging

In the energy range from several hundred keV to several MeV, the interaction of -
ray photons with matter is dominated by Compton scattering. The cross-section for
this process is governed by the Klein-Nishina equation. The atomic cross section for a
target material with atomic number Z simply follows from multiplication of the KN-
cross section with the atomic charge Z, where the atomic electrons are considered to
be essentially free. The Compton process is therefore proportional to Z. The energy
of the photon can only be measured after a cascade process of consecutive scattering
interactions until the down-scattered, i.e. in energy degraded, photon is eventually
absorbed by photoelectric absorption. This requires a thick absorber, that suffers from
a great deal of noise due to the interaction of cosmic particle radiation with the detector
material. This noise can be effectively eliminated by splitting the absorber in two
separate parts, located at a certain distance [ from each other. In this way directional
sensitivity can be introduced by employing the kinematics of the Compton effect. The
upper part of this so-called Compton telescope then comprises a position sensitive sensor
array of a suitable low-Z material with a thickness maximised for a single Compton
scattering to occur. In contrast, the lower detector in the telescope entails a position
sensitive array of high-Z material of sufficient thickness to ensure total absorption of
the scattered photon energy.
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Figure 44: Kinematics of the Compton effect. The sky location of the incident photon
can be traced back to a circular contour by measuring the scattering angle ¢ = 0. and
the orientation of the line element AB.

The sky location of the incident photon can now be traced back to a circular sky contour
by measuring the scattering angle and the direction of the scattered photon leaving
the upper telescope sensor. This is schematically shown in figure 44. By measuring
many source photons, the intersecting sky contours will indicate the most probable sky
position of the gamma-ray source.

The scattering angle #,. between the incident photon and the scattered photon, leaving
the upper telescope element, follows from the kinematics of the Compton effect:

1 1
- —> with €, = ¢, + E. (180)

€y

!

cosfy, = 1 — mc?
€y

in which e, represents the energy of the incoming photon, €,/ the energy of the first
scattered photon and E, the energy of the scattered Compton electron. The direction
of the first Compton scattered photon, the line element AB in figure 44, can be re-
constructed from measuring the interaction positions in the upper and lower telescope
elements respectively.

Figure 45 depicts such a telescope configuration for the case of the Comptel instrument,
launched in 1991 aboard the Compton Gamma-Ray Observatory (Compton GRO) by
NASA. The energy and position of the scattered Compton electron is measured in the
upper detector, comprising a liquid scintillator array in which each element is viewed by
a number of photomultipliers to obtain position resolution within a single array module.
The energy and position of the first scattered photon is measured in the lower detector,
constituting an array of optically thick Nal(T1) scintillator crystals for total absorption
of the scattered gamma-ray photon, again a cluster of photomultipliers is used to de-
termine the position of the absorbed scattered photon inside a single Nal-module. By
requiring simultaneous triggers from the upper and lower detector arrays within a small
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Figure 45: Configuration of the Compton telescope as flown on the NASA Compton
Gamma-Ray Observatory (Compton-GRO). The upper detector array (the scatterer)
consists of 7 cylindrical modules filled with liquid scintillator (NE 213A, geometric area
~ (.42 m?), each viewed by several photomultiplier tubes to obtain position resolution.
The lower detector (the absorber) consists of 14 cylindrical modules of an anorganic
scintillator (Nal(Tl), geometric area = 0.86 m*, each of them also viewed by a multitude
of photomultipliers. The distance between both detector assemblies is 1.5 meter. Credit
NASA/Comptel Consortium.

time window commensurate with the time-of-flight t;0r =& [/c of the first scattered
photon from the upper to the lower detector array, almost all background events can
be eliminated. This can be understood by remembering that these background events
either trigger only one detector array or they produce the wrong time sequence (practi-
cally all background events are produced in the high-mass high-Z absorber array). This
particular Compton telescope is the most sensitive instrument in the medium-energy
gamma-ray range (0.5-30 MeV) developed and operated thus far. The angular resolu-
tion depends on the measurement accuracy of the orientation of the line element AB
and the scattering angle 0,. and ranges from 1.7 to 4.4 degrees (FWHM) depending on
the gamma-ray energy. The accuracy of source position determination, i.e. the position
resolution, is 5-30 arcminutes dependent on photon energy. The field of view (FOV) of
such an instrument can be quite large, depending on [ and the typical diameter of the
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upper and lower detector-arrays, the FOV of the Comptel instrument subtends ~ one
steradian on the sky, similar to that of a coded mask telescope.

Figure 46 shows a gamma-ray map of the Orion region, the nearest birthplace of mas-
sive stars in our Galaxy. The orange-white contours depict the areas of enhancement
of the measured gamma-ray flux in the 3-7 MeV region. Most of this flux appears to
be concentrated near specific energies and, although the energy resolution of Comptel
is rather limited (5-8 percent FWHM), this is strongly suggestive for the presence of
gamma-ray line radiation at 4.4 and 6.1 MeV respectivily. The blue contours display
the areas of high-density interstellar clouds. The spatial coincidence of the detected
gamma-ray enhancements with these dense clouds points to interaction between en-
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Figure 46: Gamma-ray map of the Orion region in the 3-7 MeV energy range as mea-
sured by Comptel. The orange-white contours indicate the locations of gamma-ray en-
hancements, the blue contours represent the locations of the densest interstellar gas
clouds. Credit Comptel Consortium.
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ergetic cosmic-ray nuclei and the gas nuclei constituting the dense interstellar clouds.
The lines could then originate from the radioactive decay of energetic cosmic-ray nuclei
of carbon and oxygen.

9.4 Imaging through pair formation

At gamma-ray energies > 20 MeV the main interaction process with matter is pair for-
mation, causing the disappearance of the gamma-ray photon (destructive interaction)
which is converted into an electron-positron pair, both having positive kinetic energy.
The interaction can only occur in the presence of a strong electric field, as encountered
in the vicinity of an atomic nucleus or near an orbital electron. The nucleus takes
care of conserving the momentum balance (recoil-nucleus), but gains negligible energy.
Consequently, the energy of the incident gamma-ray photon is practically entirely con-
verted to electron/positron mass and kinetic energy. In the centre-of-mass system, the
positron and the electron are emitted in opposite directions, however in the laboratory-
frame they are emitted in the direction of the initiating photon, and the tracks of the
electron and positron reveal the direction of the incident gamma-ray photon. Direc-
tionality can thus be obtained by measuring (”visualising”) the 3D-orientations of the
electron and positron trajectories that originate at the location of the recoil-nucleus.
From these orientations the sky position of the incident gamma-ray photon can be re-
constructed.
The angular distribution N(¢)d¢ of the electron(positron) relative to the direction of
the incident photon is, in good approximation, given by:

odo ) mc?
T o) with ¢, = B, (181)
where E represents the total energy of the pair-electron(positron). The most probable
angle ¢, for electron(positron) emission follows from differentiation of expression (181),
this results in ¢, = ¢+/V/3.
The angle of bipartition is given in close approximation by:

N(p)do ~

2
Oy N py = % (182)

and is thus inversely proportional to the total energy of the pair-electron(positron). The

angle 1) between the partners of a pair is geometrically fixed for a given combination of
¢_, ¢4 and the dihedral angle ® between the photon-electron and the photon-positron

planes. To a first approximation, if ® = 7 (radian), and the positron and electron are

emitted symmetrically with respect to the initiating photon, we may put ¢, ~ ¢ ~ ¢,

consequently ¢» = 2¢. Hence, the opening angle of the pair also diminishes inversely

proportional to the energy of the initiating gamma-ray photon.

The characteristic interaction length for pair formation is given by the radiation length

(expressed in mass per unit area). This interaction length is proportional to [Z(Z 4+ 1)] ',
i.e. ~ Z~? for the higher Z-elements, furthermore it depends on the material properties

under consideration but is independent of the energy of the incident photon.
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Figure 47: Principle of a pair conversion telescope. Thin metal converter plates are in-
terleaved with tracking layers, comprising gas layers or thin 2D-position-sensitive semi-
conductor detector planes. Credit NASA/EGRET website.

A pair-conversion telescope can now be constructed by stacking several thin high-Z-
metal converter plates at an appropriate mutual distance, each with a thickness of a
fraction of a radiation length. The full stack is built up to a total thickness of a few ra-
diation lengths, suitable high-Z converters comprise lead or tungsten plates. The gaps
between the plates in the stack, the so-called tracking layers, are either filled with gas or
do contain thin, position sensitive, semiconductor strip detectors, this is schematically
shown in figure 47. Once the pair has formed, the electron/positron either ionizes the
gas filling along their tracks or produce an electric charge in the semiconductor strips
at the particular spots of their passage.

In the case of a gas filled chamber, the registered presence of a particle-pair triggers a
high voltage pulse that discharges along the particle tracks between the plates, delin-
eating the orientation of their trajectories. Such a detector is called a spark chamber,
the principle of which was already developed during the late 1950’s and the 1960’s for
diagnostics in high-energy physics at particle accelerators and in cosmic ray physics.
This technique was also used in the first space-borne gamma-ray telescopes on SAS-2
(NASA) and COS-B (ESA), that resulted in the first (partial) maps of the high-energy
gamma-ray sky. Although more sophisticated read-out techniques, employing thin-wire
grids for detection of the charges produced along the ionisation tracks, were utilized
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Figure 48: Schematic of the EGRET pair telescope aboard the Compton Gamma Ray
Observatory. The principal telescope elements are indicated, for explanation see text.

Credit NASA/EGRET Consortium.

in the second generation EGRET gamma-ray telecope on the Compton Gamma-Ray-
Observatory, the basic detection principle remained unaltered. Figure 48 shows the
main constitutive elements of this pair telescope, that was designed to cover the energy
range from 20 MeV to 30 GeV.

The instrument uses a multiple-layer spark chamber with thin metal pair-conversion
plates. The total energy of the gamma-ray photon is measured by a Nal(Tl) scin-
tillation counter beneath the spark chambers to provide good energy resolution over
a wide dynamic range in energy. The absorption proces involves a cascade of non-
thermal Bremsstrahlung losses by the pair-particles and renewed pair formation by the
Bremsstrahlung photons, followed by Compton scattering and finally photo-electric ab-
sorption until all the initial photon energy has been depleted. The instrument is covered
by a plastic scintillator anticoincidence dome to discriminate against charged particle
radiation incident on the telescope. Moreover, to further separate background events
from true celestial gamma-rays, a time-of-flight system is incorporated similar to the
one incorporated in the Compton telescope, to ensure that the radiation is arriving in
the proper time sequence.
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Figure 49: The third EGRET all sky map of gamma-ray point sources above 100 MeV.
The majority of these sources remains as yet unidentified. Credit NASA EGRET Con-
sortium.

The EGRET telescope instantaneously covers a wide field of view of ~ 0.6 steradi-
ans, the position resolution is dependent on photon energy and source strength. For
a strong, hard spectrum, gamma-ray source this position resolution amounts to ~ 5-
10 arcminutes. As outlined above, at lower photon energies the pair-angle is large,
however the kinetic energy of the pair particles is relatively low and they suffer from
scattering in the metal converter plates of the spark chamber. This introduces stochas-
tic fluctuations in the particle-track determination due to the straggling behaviour of
the electron/positron pairs. At high photon energies, the statistical fluctuations due to
straggling are less severe, since the pair particles possess a much higher kinetic energy.
However, as we have seen, the separation angle ¢ diminishes with 1/E., which makes
accurate determination of the bipartition angle less straightforward.

Figure 49 shows the third catalogue of EGRET detected gamma-ray point sources
above 100 MeV, the large majority of these sources has not yet been identified. This
is either due to the limited positional resolution of the EGRET instrument or to an
intrinsic lack of counterparts at other wavelengths.

The next generation gamma-ray telescope GLAST (Gamma-ray Large Area Space Tele-
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Figure 50: GLAST: concept of the tracker modules. Credit NASA/GLAST Consortium.

Calorimeter

scope),launched by NASA in 2008, exploits a new technology in track detection: the
gas-filling of the chamber has been replaced by solid state detectors as the tracking
material. This allows for improved energy and spatial resolution. An energy resolution
as good as 5 percent(FWHM) is aimed for and a position resolution as good as a few
arcminutes for a single gamma-ray photon and of the order of < 30 arcseconds for a
strong gamma-ray source. In addition, a major advantage is the fact that a replenish-
able supply of chamber gas is no longer needed, which will make a much longer mission
life time potentially feasible.

The baseline design for the GLAST pair forming telescope involves a modular tracker
array comprising four-by-four tower modules (total of 16), of which each module consists
of interleaved planes of thin lead converter sheets and silicon-strip solid state detectors.
The silicon strips are arranged in a stack of 19 pairs-of-planes, one plane of each pair for
read-out in the x-direction, the other plane of the pair for read-out in the perpendicular
y-direction. When the electron/positron interacts with such a plane-pair, an accurate
position can be determined in two dimensions. The third dimension of the track is
derived by analysing the signals from consecutive adjacent planes as the particle travels
downward through the stack towards the energy calorimeter. A multi-fold (at least
three) coincidence between adjacent plane-pairs triggers the read-out sequence of the
particle tracks.

Figure 50 shows the concept of the tower modules and the stack of tracking detectors.
The energy bandwidth of GLAST ranges from ~ 15 MeV to > 100 GeV, with a field
of view in excess of 2 steradians. The sensitivity of GLAST for point source detection
will be ~ 50 times that of EGRET at 100 MeV, with an enhanced positional resolving
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Figure 51: The first point source sky map obtained with the Fermi Gamma-ray Space
Observatory. Credit Fermi-LAT Consortium.

power of 0.5-5 arcminutes.

After launch on June 16 2008, GLAST was renamed the Fermi Gamma-ray Space
Observatory. The first point source catalogue produced by Fermi is shown in Figure
51. The large number of detected gamma-ray point sources, of which most are still
unidentified (designated 'No Association’), demonstrates the huge leap in sensitivity as
compared to EGRET.
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10 Signal to Noise Ratio

10.1 General

The feasibility of detecting a signal from a cosmic source depends on the level of noise
(and disturbance) in which the signal is embedded during the measurement. Contri-
butions to the noise signal potentially comprise other sources of radiation in the field
of view of the observing instrument (sky-noise), background radiation from the opera-
tional environment of the telescope (e.g. atmosphere, radiation belts, earth) and noise
arising from the constituting elements of the measurement chain (transducers, trans-
mission lines, wave tubes, amplifiers, mixers, digitisers, etc.). Consequently, the quality
of a particular observation is determined by the magnitude of the so-called signal-to-
noise ratio (SNR). This SNR is generally a function of integration time (7,p5) of the
observation and depends on the bandwidth (A\, vv, e€) of the measurement. From
this a limiting sensitivity can be derived, i.e. the weakest source signal that can still be
detected significantly.

For electromagnetic radiation three types of noise characterisations dependent on wave-
length, are in use.

1. In the radio-band coherent detection is employed, i.e. the phase information is pre-
served, with hv < kT. Noise and SNR are normally represented by characteristic
temperatures and temperature ratios.

2. In the (far) infrared band (hv &~ kT') incoherent detection is used. A transducer
(Latin: transducere) converts the radiation field into a voltage or current and
noise is commonly expressed in terms of an equivalent radiation power (power
characterisation).

3. At shorter wavelengths (Optical, UV, X-rays, y-rays), the incoming photons can
be registered individually: so-called single photon counting. The signal and noise
contributions can then be evaluated by a statistical treatment of the accumulated
quanta, i.e. quantum characterisation. The latter treatment of noise and SNR
applies by definition for corpuscular radiation and neutrinos.

The three notions introduced above are discussed in some detail in the following sections
and the parameters which are commonly used for SNR characterisation in these cases
will be shortly reviewed.

10.2 Temperature characterisation
10.2.1 Brightness and antenna temperature

Consider a thermal signal source radiating at radio wavelengths. If this source is op-
tically thick, the specific intensity B(v) is given by the Rayleigh-Jeans approximation
(hv < kT') of a blackbody radiator:

Cc 2I€TbV2 2]€Tb
B(V) = Ep(y) = 2 = )2

(183)
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Figure 52: Schematic view of a radio telescope, with the receiving horne, the wave tube
and the detector diode.

in which 7, is the brightness temperature. (Note that although the last expression
contains ), the units remain however per unit frequency, e.g. Watt-m=2-sr=!-Hz 1.
The convenience of using A becomes apparent when integration over the beamsize is
performed, see below.) In this way a radio brightness distribution B(v, () on the sky
can be described by an equivalent brightness temperature distribution 7;(€).

Radio waves arriving at the focus of a telescope enter the receiver input by a horn (or
“feed”) which matches the impedance of the vacuum to that of a wave-tube, that selects
one degree of polarisation. The wave is subsequently guided through the wave-tube into
a resonance cavity, which defines by its selectivity a bandwidth Av centered around
a frequency vy of the incoming radiation. A (always) non-linear detection element
(transducer) in this resonance cavity converts the wave field (i.e. the electric vector) into
a current. This is the simplest detection configuration for a radio telescope, nevertheless
it suffices to describe the essential characteristics of the measurement process, see figure
52. The power reaching the non-linear element is in good approximation given by:

n(v) Aw) i—lj | () df = n(e)kTons (184)

Qbeam

Pv) =

DO —

in which the factor % refers to a single polarisation component, A(v) represents the
telescope effective area at frequency v, Qpeam is the diffraction limited beamsize and
n(v) takes account of the frequency dependent transmission losses prior to detection by
the non-linear element. P(v) is given in units of Watt-Hz *. Expression 184 can be set
equal to the product of the transmission losses 7(v) and a thermal power kT,,; (per
unit frequency) available at the receiver input. T, is called the antenna temperature
and is therefore independent of the transmission in the receiver system. It should be
noted that 7,,; is only equal to the physical temperature 7} of the radio source if the

following conditions are met:
e The source is optically thick at the frequency considered.

e The source is sufficiently extended to fill the diffraction limited beamsize Qpeam
of the telescope, i.e. Qpeam satisfies A(V) Qpeamn = A?, the ’etendue’ of coherence
introduced in section 7.
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If the radiation source is not a blackbody but has an arbitrary spectrum (e.g. an op-
tically thin thermal source or a non-thermal source), the antenna temperature Tg,;
becomes frequency dependent and does not relate to a physical temperature. The
power received at the detection element is now expressed as

P(v) = n()kTon(v) (185)

in which T,,,;(v) is the antenna temperature at the specific frequency v. In this picture
the antenna may be thought to be replaced by its characteristic resistance R, at a ficti-
tious temperature T}, () producing a thermal noise power kT, (v) per unit frequency
at frequency v or kT, if the power received is white (frequency independent) over the
bandwidth Av considered. In turn, this replacement is equivalent to a fictitious noise
free resistor R, in series with a voltage source which generates a power spectral density,
in units of Volt2-Hz~!:

Sy (v) = 4kTyn (V) R, (186)

It is important to realize that Ty, (v) has generally nothing to do
with the physical temperature of the resistor R,. To demonstrate
this, consider an amplifier (bandwidth Av = 1 MHz), with an out-
put impedance R = 50 €2, generating a rms-white noise voltage oy
= 1 mV. The available power per Hz at the output of this amplifier
follows from

2

Oy —15 1
= = . ]_ tt * H 1
TRAy oW Watt-Hz (187)

The corresponding noise temperature is
P
Tont = T35 10 K (188)

whereas the physical temperature is about 300 Kelvin.

Only in the case of passive elements (i.e. which do not need en-
ergy), like wave guides, resistor networks and transmission cables
embedded in the earth, the noise temperature and the physical
temperature are about equal.

10.2.2 Noise sources at radio wavelengths

In practise, if the radio antenna is pointed at a sky region devoid of sources, a non-zero
output will be measured at the output of the receiver. This arises from various noise
sources:

e Residual thermal emission from the atmosphere and from the telescope itself.
A simple approximation is available when the atmosphere is optically thin, i.e.
if the optical depth 7(v) along the zenith is small compared to unity. In this

102



1000

100

10

Noise temperature/K

1 1 \ 1 1
0.1 1 10 100 1000
Frequency/GHz

Figure 53: Frequency dependence of the noise temperature for several sources of back-
ground radiation and receiver components. Figure taken from Longair 1992.

case, the specific intensity I(v) ~ 7(v)B(v, Ty ), with B(v, Ty;,) the blackbody
function at the average temperature Tatm of the atmosphere. Since T(V) is a strong
function of wavelength, the contribution of the atmospheric thermal emission to
the noise is also a strong function of wavelength and so is the associated noise
temperature Ty, (v). For example at v = 100 GHz (A = 3 mm), 7(v) = 0.2,
i.e. the atmospheric emission corresponds to an antenna temperature of about 50
Kelvin. Figure 53 shows, among others, the frequency dependence of the noise

temperature associated with atmospheric emission.

e Thermal emission from the telescope environment and the earth surface, detected
in the side lobes of the diffraction pattern of the telescope’s angular response
function (diffraction limit). This contribution to the antenna temperature is very
site dependent. Symbol: Tjpe (V).

e Thermal noise from the Galaxy and the microwave background. The Galactic
contribution is again strongly frequency dependent, the microwave background is
white. Both components are also indicated in figure 53. Symbol: Ty (v) and Ty,

e Contributions from the receiver chain, i.e. feed, wave guides, detection element,
amplifiers, etc. This contribution to the total noise is normally expressed as an
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effective noise temperature T ;s (v). The value of T, () is derived in the following
way. Suppose that the total noise power available at the antenna P, (v), is
subject to a power amplification G(v) in the receiver chain. At the output stage
of the receiver, the total power P,,;(v) is then given by

Poit(V) = G) * Popy (V) + Pree(v) = G(v) - [Pant(u) + PG(S)] (189)

in which P,..(v) represents the noise power introduced by the receiver chain.
Division by Boltzmann’s constant % yields:

Tput(v) = GW) - Tt () + Togy ()] = G () - Ty (v) (190)

Tout(v) equals the noise temperature at the output of the whole telescope system
(antenna + receiver chain), T, () is the effective noise temperature introduced
above. T,;(v) can be regarded as the temperature which has to be assigned to
the characteristic resistance R, of the antenna in order to have a fictitious noise-
free system produce the same noise temperature as the noisy system for 7,,;, =
0 Kelvin. T,,(v) represents in a similar way the temperature to be assigned to
R, to have a noise free system produce the same noise temperature as the noisy
system at the actual value of the antenna temperature T,,,;:

Top(v) = Tame(v) + Tegy (v) (191)

T,,(v) is the so-called operational temperature of the telescope system. This re-
lation effectively contains all essential noise contributions: Ty, (v) includes all
components due to radiation noise, T,¢(v) includes all components referring to
the receiver chain. Figure 53 shows some typical values of T, () for masers,
cooled field-effect transistors (FET) used in the first amplifier stage, parametric
amplifiers and superconducting mixer elements (SIS) which are employed in case
of a heterodyne detection chain.

Note 1: If the receiver chain consists of a series of n noisy elements, each with a
power gain G;(v) and an associated effective temperature T, y, (v), the operational
temperature T,,(v) derives from:

T.rp, (v T (v
Top(V) :Tant(y) + Teffl(V) + ﬁ(y)) + -+ Wncgl()y) (192)
This is the cascade rule according to Friis (verify yourself). Expression 192 shows
that the first stages in the receiver chain are mainly determining the noise behavior
of the system, once the amplification is sufficiently high, the noise contributions
of additional stages become small. In particular the input-stage is crucial with
respect to the achievable noise performance.

Note 2: The power gains G;(v) may partly be smaller than unity, this represents
transmission losses in passive components like wave tubes, transmission lines and
resistor networks: G;(v) = n;(v). These losses can seriously degrade the noise
characteristics of the system since the physical temperature of the attenuating
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components enters the determination of 7,,(v). According to Kirchhoff’s reci-
procity law, in equilibrium the absorbed power by the passive components equals
the radiated power. Hence, the contribution of a single loss-element at physical
temperature 77, to the noise can be expressed as (1 —n(v))T}, or ﬁ[L(V) — 11Ty,
with L(v) = n7(v) the frequency dependent loss-factor (by definition larger than
unity). Employing this single loss-element behind an antenna yields a system

output noise given by the expression:
1

Tour(v) = ) (Lane(v) + [L(v) — 1]17) (193)
ie. T,p(v)=[L(v) — 1] Ty, and
Top(v) = Tone(v) + [L(v) — 1]T7, (194)

To show that this potentially strongly influences the value of T,,(v), consider the
following example.

Suppose the telescope is pointed at a cloudless sky region devoid of sources with
Tant(v) = 20 K. If a small piece of wave tube between the antenna and the input
of the amplifier introduces a loss of 10 %, i.e. L(v) = 1.1, and this wave tube is at
room temperature (7" ~ 290 K), the operational temperature becomes 7,,(v) =
20 + 0.1 - 290 = 50 K; a deterioration of a factor 2.5. If the wave tube is cooled
with liquid Nitrogen (T ~ 70 K), T,,(r) becomes about 27 K (35 % deterioration)
and at liquid Helium temperature (7' ~ 4 K), T,,(v) = 20 K, i.e. practically no
deterioration. The importance of cooling of passive components at the receiver
chain front-end is therefore amply demonstrated.

10.2.3 The SNR-degradation factor

With the above assessment of the various noise contributions, the total operational
noise temperature is expressed as:

Top(V) = Ta(V) + Tep + Totm (V) + Ligpes (V) + Teps(v) (195)

This represents the background power against which a potential source signal will have
to be detected. If the signal power (i.e. radiation flux) is given by ®,(v) = kT, (v), the
momentaneous SNR at the input of the receiver chain is given by the ratio between the
available source power and the power contained in the background radiation fields:

Ts(v)

SNR;,(v) = 196
( ) TGal(V) + ch + Tatm(u) + T'lobes(V) ( )
The noise generated by the receiver chain degrades the SNR at the output to:
Gv) - T,(v)
SNR,,(v) = 197
) G()  Tea (V) + Tep + Tatm (V) + Tiopes (V) + Tepr(v)] (197)
The SNR-degradation factor D(v) (> 1) is now simply expressed as
SNR;, T,
D(V) _ (V) _ P(V) (198)

- SNRout(V) - Tant(V)
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Referring to the example in Note 2 in the previous subsection, the deterioration of
the SNR due to the loss in the wave tube would be specified by D(r) ~ 2.5 (room
temperature), D(v) ~ 1.35 (liquid Nitrogen) and D(v) = 1 (liquid Helium). The
momentaneous SNR = ;;p—(("y)) refers to the value obtained considering the radiation
energy during one second (e.g. Watt) and in a bandwidth of 1 Hz. In reality this is
of course greatly improved by integration over the selected bandwidth Av and over an
exposure period Tpys. The derivation of this frequency (band) limited SNR is the subject

of the next paragraph.

10.2.4 Derivation of the band limited noise in the thermal limit: signal to
noise ratio and limiting sensitivity

horne Direct detection horne Heterodyne detection
~._ wave pipe ~~._ wave pipe

Quadratic detection element  E?(t) or |E(t)]

{ Y

Figure 54: Schematic view of a radio receiver with the receiving horne, which selects
the frequency vy and the frequency bandwidth Avg, the wave pipe, and the ’quadratic’
detection element (left). By mizing the radio signal with that of a local oscillator (LO),
the carrier frequency can be shifted to much lower frequencies without any information
loss (heterodyne detection), suitable for electronic processing (right).

The average spectral noise power in the thermal limit (hv < kT') for one degree of
polarization, equals k7. This is the situation which prevails in radio-, microwave- and
submillimeter receivers and hence gives rise to a description of signals and noise with
the aid of characteristic temperatures, e.g. source temperature 7T and noise temperature
T,,. The one-sided power spectral density S(v) = P(v) = kT Watt Hz ! is constant as
a function of frequency and, as a consequence, is termed white noise.

In practice, due to the finite frequency response of any receiver system, this will be
frequency limited. Hence we can express the double-sided power spectral density for a
thermal source for one degree of polarization as:

1 kT
Salv) = SKTTI (%) with v, < = (199)

where v, constitutes the cut-off frequency of the receiver system under consideration,
i.e. the total energy contained in the power spectrum remains finite, as it should be for
any physical system.
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Continuing now with the detection of radio signals, we wish to consider the signal-to-
noise ratio. A linearly polarized signal can mathematically be expressed by the real

function:
E(t) = Ey(t) cos(2nvt + ¢(t)) (200)

The amplitude w(t) = Ey(t) of the quasi-monochromatic wave is a wide-sense station-
ary Gaussian random time function of zero mean. Moreover the stochastic process is
assumed to be mean- and correlation-ergodic, i.e. for an arbitrary real stochastic vari-
able w(t) its ezpectation value at time t, E{w(¢)}, can be interchanged with its time
average.
Detection of such a radio signal requires, like in the case of mizing, a non-linear op-
eration like ¢(t) = |w(t)| or ¥ (t) = w?(t), to extract the power present in the signal.
We shall consider here the case of quadratic detection, i.e. 1 (t) = w?(t), since this is
mathematically straightforward in contrast to absolute-value transformations.

If w(t) can be described as a stationary random process with a normally distributed
amplitude around zero mean, the probability density function is given by:

flw) = ﬁ/ (1t = 0) (201)

and the measuring process is schematically indicated by
w(t) — transformation — ¥(t) = w?(t) (202)

For the transformation ¢ (t) = w?(t), with 02 = R,(0), we can write the probability
density of ¢ as
1

—1p
1) = g sy ) (203)

with U(v) the Heaviside step function. (In understanding expression (203), don’t for-
get the transformation dw = di!). Thus, the stochastic process 1 (t) is apparently not
normally distributed, and of course also 1, # 0.

To derive the power spectral density of ¢)(¢) we need to find an expression for the
autocorrelation function Ry (7) of ¥(¢). One can show that for a normally distributed
w(t) the autocorrelation of ¥ (t) = w?(t) follows from:

Ry(r) = E{T/)(t)T/)(tJrT)}:E{wQ(t)wZ(tJrT)} =
= E{w®)}E{w’(t+7)}+2E* {wt)w(t+ )} (204)

The derivation of this relation applying the theory of stochastic processes makes use of
the so-called moment-generating functions of w(t). Hence:

Ry(r) = Ry,(0) + 2R5, () = 1, + Cy(7) (205)

The average /i, of ¥(t) equals the variance of w(t), the autocovariance of 1 (t) equals
twice the square of the autocovariance of w(t), and the variance of 1(t) is 0, = 20,,. The
double-sided power spectral density of ¢(t) follows from the Wiener-Khinchin theorem:

Sa, ) = R (0)0(v) + 284, (v) * Sa, (V) (206)
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It is important to realize that in the case of quadratic detection a number of frequency
components is introduced in the case of an amplitude-modulated signal like w(t). We
shall demonstrate this, as an example, for a deterministic signal, i.e. an amplitude-
modulated high frequency carrier of the form:

z(t) = A(1 + mcosnt) cos wt (207)

This represents a high frequency carrier (w) the amplitude (A) of which is modulated
by a much lower frequency (7). m is called the modulation index.
The signal z(t) contains three discrete frequencies, w — 7, w, and w + 1. This is easily
seen by using cos acos 8 = 3[cos(a + ) + cos(a — B)].

The instantaneous intensity of this signal can be expressed as I = x?(t), and for the

average intensity we get

| 1

I=a%(t) = 5A2(1 + 5m2) (208)
The equivalent of the term E {a?(¢)} E {a?(t + 7)} in expression (204) amounts in this

case to a DC-term representing the square of the average intensity:

72 1, 1oo\?
=34 <1+§m> (209)

To arrive at the equivalent of the autocovariance term 2E* {a(t)a(t + 7)} in equa-
tion (204), we first have to compute the autocovariance C,(7) of z(t):

Co(r)=zx(t)x(t+71) = %AZ[COS wT + imQ cos(w + )T + imZ cos(w—mn)T]  (210)

Subsequently:

—2 1 1

x(t)x(t+r)2 = ZA4(1 + §m2 cosn7)? cos® wr (211)
Using the relation cos? a = %(cos 2a+1) this can be disentangled in various components:

- 5 4 m2A4
z(t)r(t+71) = §(1+c052wr)+

1
[cosnT + 3 cos(2w —n)T +
4A4

1 1
+ 5 cos(2w + 1) 7| + [1+ cos2nt + 3 cos(2w — 2n)T +

1
+ cos2wT + 5 cos(2w + 2n)T] (212)

This expression shows that the original frequencies in the power spectral density of x(t),
w and w £ n have been transformed in the squaring process to frequency components at
DC, n, 2n, 2w, 2w+ n and 2w + 2n. Displayed on a double-sided frequency diagram this
shows twice the original frequency bandwidth centered at DC and +2w (see figure 56).
In the case of the stochastic signal w(t) we shall see the same characteristics in the
power spectral density of the autocovariance Cy (7).

Consider now the front-end of a receiver behind a radio antenna (telescope), see
(Figure (54). This front-end generally contains a resonance cavity tuned at a central
frequency 7 = vy with a bandwidth Av,. If the noise entering the receiver can be
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AM modulated signal x(t) = A(1 4+ m cosnt) cos wt — frequency components

A A
% %
Am/4 Am/4 Am/4 Am/4
m -0+ - to

Spectral components after quadratic detection from C2(t) =x()x(t + 1)?

At m*
(%)

A 1+ i 2 1+ L
16 8 16 8

At A
m?— m2—
% ) 6
A A® At At
mzﬁ mzé—z- mzE mz§
At At At ¥ At o AP
-2 =20+ +2n 2m - 04 +2q 2 -nt2m+n+2n

Figure 55: Frequency components of an amplitude modulated (frequency n) carrier (fre-
quency w) with modulation index m (upper panel). The spectral components that emerge
after quadratic detection present in the autocovariance function are shown in the lower
panel. Euvidently the sidebands appear at twice the carrier frequency w, moreover the
stgnal bandwidth 4n amounts to twice the original bandwidth 2.

characterized by a noise temperature 7, the double-sided power spectral density of
w(t) for one degree of polarization is given by:

vV — Vg V + Vs
IT II 213
(a7 () @19
This signal is then fed to a non-linear detection element, like a Schottky-diode or an
induction coil, which introduces the transformation v(t) = w?(t). Consequently, we

1
—kT,
2

de (V) =
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R2(0) = (02)? = (%an 70 [H (”A_VS"S> .y <”A+V:’S>] du>2 — (KToAv,)?  (214)

1 9 V— Vs V+ v V— U v+ v
5 (K1) H( Av, >+H( Av, ) *{H< Av, >+H< Av, )]

B 9 v 1 <1/—2ys> 1 (V+2Vs>]
— (KT,)?Av, [A(Ays>+2A o)+ (Pa (215)

Sa, (v) consists therefore of a component (kT,Avy)?6(v), a time independent average
value at zero frequency (stationary Gaussian random amplitudes) and three 'triangle-
functions’ centered at zero frequency and at frequencies —2v, and +2v, with a basewidth
of 2Av,, as illustrated in figure 56. Note the correspondence in frequency shift and
bandwidth with the example involving the deterministic amplitude modulated signal
above! In practice one always has v, > Avy, in the centimeter range for example one

S,,(v) one degree of polarization 0
1 Av, Av
=KT, : 1
2 > KTa
| |
-V, (KT, Av,)? v,
Sy(¥) (KT,)? Av,
1 1
> (KTy)2Av, 7 (KTy)?Av,
. AN
-2vs ZAVS +2Vs

'Avs 2v +AVS

c

Figure 56: Upper panel: Double-sided power spectral density of thermal radiation for
one degree of polarization (P = kT Watt Hz '), over a channel bandwidth Av, centered
at frequency vy, incident on a non-linear detection element. Middle panel: double-sided
power spectral density at the output of the detection element. Lower panel: low frequency
filtering (cut-off v.) providing signal averaging over a time interval ATy, = 1/2v..
This time averaging process obviously does not influence the DC-component, this is
schematically indicated in the figure by showing an exclusion of the green arrow.

typically has v, ~ 10'° Hz and Av, ~ 107 Hz. The detection of a potential radio source
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stgnal will then have to be assessed in the context of the autocovariance of the noise
signal, i.e. we need an expression for Cy(7). This follows from the Fourier transform
of the term 2[Sy, (V) * Sq, (V)] in equation (215). Applying the shift theorem and the
A & sinc? transform from Fourier analysis, we get:

67271'72(21/37) + e27ri(21/s7')
2
= (kT,,Avy)?(1 + cos 27 (2v,7))sinc* T Av, (216)

Cy(r) = (kT,Av,)? sinc*TAv, + (KT, Av)?sinc’T Ay,

The cos 27 (2v,7) term refers to the high frequency carrier which will be filtered off
in any low frequency averaging process. This averaging process can be taken over an
arbitrary time intervalAT,,. This is equivalent to filtering in the frequency domain
with a filter TI(v/2v,) with v, = 1/(2AT,,) commensurate with the Nyquist sampling
theorem.

The averaged value of the autocovariance is then obtained in the 7 domain by convo-
lution of Cy(7) with the Fourier transform II(v/2v.) < 2v,sinc2v,7.

Assuming v, < Avg < vy, the cos 2m(2v,7) term in expression (216) averages to zero.
Consequently we have:

[Cu(M)]ar = (KT,Av,)?sinc®T Av, * 2u,sinc2v, 7
+00
= (kT,Av,)?* - 20, / sinc?7’ Av,sinc2v, (7 — 7')d7’ (217)
and with a change of variables v’ = 7' Ay, this becomes:

+00
[Cyp(u)] zp = (KT)* Avg - 20, / sinc?u/sinc

— 00

22U,

Avg

(u—u')du' (218)

Since v./Avy < 1, sinc(2v,./Avg)u’ varies very slowly compared to sinc?u’. We may

therefore regard sinc?u’ as a d-function in comparison to sinc(2v,/Av,)u’. Moreover we
00 +oo

also have the proper normalization, since [ sinc’u'du’ = [ &(u')du’ = 1. Applying
—00

— 00
this approximation we get:

+0o0
2v,
[Cy(W)]yp = (KT,)°Avg - 2v, / 6(u')sincAV (u—u)du'
VS
= (kT,)*Av, - 2v, sincﬁu (219)
n S c Al/s

Substituting 7 = u/Av, we arrive at the final expression for the AT-averaged value of
the noise autocovariance:

[Cp(T)] g = (KT)*Avs - 2v,sinc2v, 7 (220)

The noise variance [Cy(0)] ., = (KT3,)?Avs-(21,) should be compared to the strength
of a radio source signal characterized by a source temperature Ts. The average value of
this source signal after quadratic detection follows from:

(14)s = Ry, (0) = 0, = kT A (221)
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Frequency (f)

Figure 57: Frequency spectrum of the noise of a transducer. Noise power is along the
vertical axis. Figure taken from Dereniak € Crowe 1984.

and the signal-to-noise ratio thus becomes:

o (m)s Ty (A 1/2
SN =i~ 7 (3) 222)

i.e. the signal to noise is proportional to the square root of the receiver bandwidth Av;
and inversely proportional to the double-sided bandwidth of the integrating (averaging)
low-pass filter v.. Introducing AT,, = 1/(2v.) (Nyquist sampling) we get:

S/N = % (Av AT, )" ? (223)

n
i.e. the S/N ratio improves with the square root of the product of the radio-channel
bandwidth and the integration time AT,,. In practice the noise temperature of a radio-
wave receiving system is designated as the system or operational temperature that
includes the contributions to the noise of the sky, the antenna and the receiver system.
The S/N =1 sensitivity for detecting a radio source against the system thermal noise
temperature is sometimes referred to as the radiometer equation:

TSO'LLTC@ . .
S/N = T (AI/SAT,W)I/2 radiometer equation! (224)
system

The minimum detectable source power for one degree of polarization with a signal to
noise ratio of one is given by:

(Py)min = kT (AvyAT,,) 2 (225)

10.3 Power characterisation
10.3.1 Typical set-up of observation

Consider the case of incoherent detection of a radiation field by a transducer which
converts the incident radiant power into an electrical output (usually a current or a
voltage). Two types of flux will be used to characterise the radiation source:
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e Monochromatic flux ®()\g) at a particular wavelength \q, defined as:

D)) = 7O<I>()\) C5(A— Ag) dA (226)

e Blackbody flux ®(7"), which is the specific flux integrated over a blackbody profile:

O(T) = 7<I>bb(A, T) d\ (227)

The incoming signal is modulated (e.g. by a chopper) with a fixed frequency fepop. This
signal is now the input for the transducer. This transducer has a spectral bandwidth A\
over which its integrates the incoming flux. It produces a time-dependent output voltage
V,ut or current I,,;, which also contains the noise of the transducer. If thermal noise
(so-called Johnson noise) dominates, this noise is “white” in the temporal frequency
domain: k7" Watt-Hz=! up to a cut-off frequency f,, see figure 57. The frequency
bandwidth of the transducer is in this case Af = f.. Since the source signal is periodic

with known period 1" = fi , the outcoming signal can be folded modulo this period.
chop

In this process all transducer noise at other temporal frequencies can be filtered out.

Source | == Chopper | = [Transduce

10.3.2 Responsivity

For the case of incoherent detection a basic figure of merit is responsivity. This is
the ratio of the electrical output (in Amperes or Volts) to the radiant input, i.e. total
radiation flux (in Watts).

The spectral voltage responsivity of a detection system at a particular output wavelength
Ao is the measured voltage output V,,.(f) divided by the monochromatic radiation flux
® (Ao, f) incident on the transducer:

Re(ho, ) = 22D G Vo wan (228)

(o, f)
Since the transducer generally has a limited frequency response or time resolving power
(in figure 57 it is flat up to a cut-off frequency f.) the output V,,; will depend on the
temporal behaviour of ®(\g), which can be modulated with a chopping frequency f.
For instance, if f > f., the response of the transducer will be zero. Simularly, the
spectral current responsivity is defined as:

Ri(Xo, f) = Loulf). (in Ampere - Watt™") (229)

(Ao, f)

Alternatively, a blackbody responsivity R(T, f) can be defined, which represents the
detector output signal divided by the incident radiation flux from a blackbody source
®(T) modulated by frequency f:

V;)ut(f)
(T, f)

Ry(T, f) = (230)
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The relation of Ry (T, f) with Ry ()g, f) can be easily seen by computing the voltage
at the output of the transducer through integration of the spectral responsivity over a
blackbody spectrum:

Vout = /Rv()\oa f) @u(Xo, T') dXo = Ry (T, f) /(bbb()‘OaT) dAg (231)
0 0

hence,

o

Ry (X, ) @up(Ao, T') dAo

Ry(T, f) = = Ry (o, f) (232)

({ Dy, (Ao, T') dNo

which shows that Ry (T, f) is obtained by averaging Ry (g, f) over a blackbody spectral
distribution. Note that the blackbody responsivity is a measure of the detector response
to incident radiation integrated over all wavelengths even though the transducer is only
sensitive to a finite wavelength interval.

Example: consider a steady blackbody source with area A, irradi-
ating a sensor (transducer) area Ay, both areas are normal to the
optical axis connecting them. The power emitted by the blackbody
source per unit solid angle equals Aso5pT*/m (in Watt-sr—!) with
osp = 5.67-107% Watt-m2-K* Stefan-Boltzmann’s constant. The
transducer area A,;. subtends a solid angle as seen by the black-
body source of A/ R? if the source is at a distance R. Hence, the
blackbody voltage responsivity follows from:

7TR2 V;)ut

T)= " tout
RV( ) AsAtrUSBT4

(in Volt- Watt™") (233)
This equation also holds if the transducer is preceded by a loss-less
optical system that images all of the blackbody source area onto
the detector area, since the ratio Vy, /A, remains constant.

10.3.3 The Noise Equivalent Power (NEP)

The noise equivalent power (NEP) of a detector is the required power incident on the
detector to produce a signal output equal to the rms-noise voltage at the output. Stating
this in a different way, the NEP is the signal power that is required to produce a SNR
equal to one. This signal power is given by

‘/;)ut - RV - ® (234)

This yields a SNR of
SNR =

(235)

Ry, -® _ R;-®
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and consequently for a SNR = 1:

®=NEP= \/f = v i’;’[ (236)

Either the spectral responsivity R(\g, f) or the blackbody responsivity R(7, f) may be
inserted in equation 236 to define two different noise equivalent powers. The spectral
NEP()g, f) is the monochromatic radiant flux ®()\g) required to produce a SNR of one
at a frequency f. The blackbody NEP(T, f) represents the blackbody radiant flux re-
quired to produce a SNR of one.

The noise equivalent power is useful for comparing similar detectors that operate under
identical conditions. It should however not be used as a general measure of detector
performance for comparing dissimilar detectors. Firstly, the larger the temporal fre-
quency bandwidth Af the larger the noise that is present. Also, increasing the detector
area A; will in general decrease the responsivity if all other factors are held constant.
A more useful figure of merit is therefore the normalized noise equivalent power, either
per unit bandwidth:

NEP 1
NEP" = —— in Watt- Hz™2 237
e ) (237)

or per unit bandwidth and per unit area:

NEP 1
NEP* = NP (in Watt - Hz"% -m™") (238)
Normalisation entails proportionality to the square root of bandwidth and collecting
area A, .
The reciprocal values of the NEP and the NEP* are the so-called Detectivities, D and

D*, and are often used, i.e.:

1
b = Ngp (239)
k _ 1 _
D' = o =D \JAr Af (240)

(241)

implying the notion that “larger is better”. Again, either the spectral or blackbody
NEP may be used to define spectral or blackbody detectivity, D*(Ao, f) and D*(T, f)
respectively.

An alternative equivalent expression for D* is:

V Atr Af
)
with ® the radiant power incident on the detector. Expression 242 can be interpreted
as D* to be equal to the SNR at the output of the transducer when 1 Watt of radiant
power is incident on a detector area of 1 m? with a bandwidth of 1 Hz. This is of course
only meant as a mental concept because most transducers are much smaller than 1 m?

and they reach their limiting sensitivity output well below 1 Watt of incident power.
The figure of merit D* may be used to compare directly the merit of transducers (sen-
sors, detectors) of different physical size, whose performance was measured using dif-
ferent bandwidths.

D* = . SNR (242)
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10.4 Quantum characterisation
10.4.1 The unfiltered Poisson process

In the quantum limit no coherence effects occur and the radiation field fluctuations can
be described by photon statistics only. Consider an incident radiation beam (wide-sense
stationary, ergodic) with an average flux of A photons (or particles or neutrinos) per
second. The generation of photons at random times ¢; can be described by a staircase
function, with discontinuities at time locations ¢; (see figure 58):

Z(t) = > U(t—t;), U(t) = unit-step function (243)

1 fort >0
ut) = {0 fort <0

The photon flow rate [number of photons per second] follows from time differentiation

Z(t) | Poisson process: L. U (t—t,)

| [0 ¢ t

Figure 58: Staircase function describing a Poisson process.

of the stochastic variable Z(t):
Z
x(t)= 20— 550 1) (244)

and represents a train of Dirac impulses at random time locations t;.

At a constant photon rate, X (t) is a wide sense stationary (WSS) stochastic signal
with a time independent average X—(t) = A photons per second, A is the rate parameter
characteristic for the process under consideration.

We can now express the stochastic process Z(t), displayed in figure (58), in the following
way:

:/X /Zét—t)dt—k(o ) (245)
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in which k(t,t5) represents the number of photons in a time period (t1,%;) of length
t =ty — t;. This number k(¢y,1,) is a Poisson distributed random variable (RV) with
parameter A, i.e. Z(t) expresses an unfiltered Poisson process:

(A)F
I

Note: For Poisson distributed RVs hold that if two time periods (¢1,t2) and (t3,t,) are
considered that are non-overlapping, then the RVs k(t,t5) and k(t¢3,t,) are indepen-
dent.

From expression (246) we can construct a Poissonian probability density function fea-
turing a continuous random variable (k):

p{k, \t} =

with A the rate parameter (see above) (246)

oo

p(k, At) = 2_: p(k, \t)d(k — k) (247)

The average value of x and of x? for assessment of the fluctuation magnitude follow
from:

E{x} — /oom p(k, M)dk = M (248)
E{x?} = /OOHZ p(k, M)dr = (\t)* + At (249)

—00

The average value for kK = At in equation (248) is of course as expected; the first term of
equation (249) is the square of the average and its second term represents the variance.
Since the variance of the fluctuations associated with the flow of the photons equals ¢,
the standard deviation becomes v/At, i.e. the ’strength’ of the noise in the photon flow.
The relative fluctuation or signal to noise ratio (SNR) is then:

At
SNR = -— =V 250
o (250)

Consequently, the larger A¢, the smaller the relative shot noise in the photon flow. With
very small A we apparently need a long filter time to suppress this shot noise.

To determine the autocorrelation function Ry(t1,ty) of the Poisson process Z(t) let
us first consider t5 > t;. The variables k(0, ;) and k(t1,1s), referring to adjacent but
non-overlapping time periods, are then independent Poisson variables with parameters
At; and A(to — t1) respectively. Thus we have:

E{k(0,t)k(t1,t2)} = E{k(0,t)}E{k(t, t2)} = N2t (ts — 1), also = (251)
k(ti,ts) = k(0,t) —k(0,t)) = Z(ts) — Z(t,),= in (251) =
E{Z(t)[Z(t:) - Z(t)]} = Rz(ti,t:) —E{Z°(t))} =
Ry(ti,ta) = Nti(ta —t1) + N2 + Mty = Nty + Ay (252)
If ty <t = Ry(ty, t2) Nty + My (253)
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Introducing the autocovariance Cz(t1,t2) of Z(t) we can write:
Ry(ty,ty) = Nty + Cy(ty, ta) = Ntity + MUty — t1) + MUt — t5) (254)

Regarding the stochastic variable X (¢), the time derivative of Z(¢) and representing
the train of Dirac impulses at random time locations, we have the time independent
average value E{X(¢)} = X\ = the rate parameter.
The autocorrelation function follows from successive partial differentiation of the auto-
correlation of Z(t) with respect to t; and ¢y, thus:

O*Ry(t1,12)
0t10t,
Designating the time difference (¢, —t;) = 7, we arrive at the general expression for the

autocorrelation of a train of unit-value Dirac impulses at random time positions (WSS
ergodic signal):

Rx (1) = A + \d(7) (256)

The second term in equation (256) represents the covariance C(7) of X (¢), which equals
in this case the variance C'(0) since it is zero for every value of 7 except for 7 = 0. This
is of course evident, since the Dirac impulses are randomly distributed in time and are
thus mutually completely uncorrelated.

10.4.2 Frequency limited shot noise

By applying the Wiener Khinchin theorem to Ry (7) we can compute the power spectral
density:

Rx (1) & Suy (v) = /OORX(T)e_ZWj’”dT = A0(v) + A (257)

which is inconsistent with physical reality since it implies an infinitely high power signal.
In practice there is always a frequency cut-off at say v., owing to some (high frequency)
filtering process. We might perceive this as follows. The photon detection process
involves conversion to charge carriers that are subsequently fed into a filter network,
e.g. a first order RC filter. The RC-network acts on each individual charge impuls ¢ (J-
function) with a current response function A(t). If we now assume for convenience that
each single photon generates a charge carrier (detection efficiency=1), implying also an
average charge carrier rate A, the resulting photo-current follows from a convolution of
the Dirac J-function train X (¢) with h(?):
1(t)

Y X (t) = h(t) = Y(t) (258)

with h(t) the filter circuit impulse current response function (Note: h(t) = 0 for t < 0
and is a normalized function: [ h(t)dt = 1).
0

Hence we have:

Y(t) = h(t) » X(t) = 72 St —tp)h(t —t)dt' =D h(t —ty) =Y + AY () (259)
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Owing to the high carrier density in the charge flow, there will be a large degree of
overlap between subsequent responses. This will result in a total current I(¢) that

shows a Gaussian (normal) distribution around a mean value I. For the expectation
value of Y'(t) we thus find

Y = E{Y(t)} = E{/Xt—t t")dt'}

- / E{X(t — )} A(t)dl' = A / h(t")dt' = A H(0) (260)
0 0
where for the last transition we have used:
H(2mjv) = / h(t')e~ 27" 4’ = H(0) = / h(t')dt (261)
0 0

In the Fourier domain we write for the current power spectral density:

Siy(v) = [H2mjv)]® Sax(v)
= N |HQ2mjv)|?6(v) + X |H2mjv)|> = A2 H2(0) + X |H(2mjv)[* (262)

Evidently the power is now finite, as it should be. We obtain the autocorrelation by
taking the Fourier transform of the current power spectral density Sy, (v):

Ry (1) = A* H*(0) + A [h(7) * h(T)] (263)

where the first term on the right hand side gives the mean charge response of the linear
dynamic system, and the second term represents the noise. Taking the autocovariance
at 7 = 0 we obtain the variance of the noise signal:

+00 +0o0 +00
Oy (0) = A / h2(t)dt = A / |H (21 jv) 2dv = 2) / \H@rjv)2dv (264)
—0o0 0

in taking the last steps we have applied Parseval’s theorem and changed from a double
sided Sy, (—00 < v < 400) to a one-sided Sp: twice the integral from 0 < v < oo to
accommodate physically real frequencies.

We shall now apply the above analysis to the specific case of a photoconductive semi-
conductor device, where the shot noise is associated with the random generation (G)
and recombination (R) of charge carriers and where the frequency filtering arises in-
trinsically from the finite life time 7, of the generated charge carriers.

10.4.3 Photoconducters: shot noise limited sensitivity

Generation/Recombination(GR) shot noise in photoconductors, intrinsic
frequency filtering Generation-Recombination noise (GR noise) originates in ther-
mally or optically-stimulated electronic transitions between valance and conduction
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band or transitions between impurity levels, traps, or recombination centers and one of
these bands. Associated with these transitions are fluctuations in the numbers of free
carriers and in their lifetimes, thus giving rise to the GR noise. The detailed mathe-
matical treatment of GR noise depends on many specific parameters like the number of
energy levels, the energies corresponding to these levels, the electron population, and
the occupancy of states.

As a simple example, the common case of an extrinsic semiconductor such as Ger-
manium or Silicon containing both donors and acceptors, one being predominant and
exceeding in number the number of free carriers, will be treated here.

For a simple GR two-level system we assume a generation rate (number per unit time)
g(N) and a recombination rate r(N) which describe the transition from the impurity
level to the conduction band and the reverse (recombination) process. N is a random
variable that represents the number of free carriers (predominantly electrons) in the
conduction band at time t. We further assume that both rates g and r depend explic-
itly only on the momentaneous number of free carriers in the conduction band, N(¢). In
general ¢ is a decreasing function of N (i.e. negative slope), whereas r is an increasing
function of N (i.e. positive slope). In the equilibrium (steady state) situation we have
balance between the generation and recombination rates, say at a free carrier average
number value N = N, at time ¢. Hence, for g, = g(N,) and r, = r(N,) we have

ge = 71e and N normally distributed around N, = (265)
1 [(N - N,)? AN
p(N) = p(N,)exp — 3 l%] with variance AN? = N, (266)

Taking the derivatives g, = (dg/dN)y—n, and 1/, = (dr/dN)y—y, as the generation rate
and the recombination rate at the equilibrium number value N, respectively (dimension
[sec ']), we can assign specific time scales to the GR process by defining 1/7, = —g¢,
and 1/7, = r! leading to a free carrier life time:

| d 1 N
- = - — _ = —_ = — — = — — d: 267
R R )
AN? = N, =g, 7 (268)

The carrier life time 7, dictates the dynamical response of the semiconductor on changes

in free carrier generation, this response can be quantified by solving the time dependent

continuity equation for change dN(t)/dt:
dN(t) N(t)

dt Ty

N(t) = g7 (1 _ ﬁ) (269)

The dynamical behavior expressed in equation (269) is characterized by a first or-
der system with transfer function H(27jv) = 1/(1 + 2mjvr), its frequency response
|H (2mjv)| trails off at high frequencies with a tipping point at v, = 1/(277,). This is
shown, one-sided, in the left panel of figure (59). The associated autocovariance func-
tion is shown in the right panel of figure (59). It constitutes a double-sided exponential
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Figure 59: For a first order transfer function with tipping point v = v, (left), the
autocovariance drops exponentially with |T| (right).

function centered on 7 = 0 with a decay constant 7, that follows from the Fourier
transform of the double sided transfer function:

1 1
H(2mjv) + H(=2mjv) = o
(2mjv) + H(—2mjv) ((1 + 2mjuTy) * (1- 27TJVT£)> - -
e et
RN o U(T) + 2T£U(_T) -
_
T
_ e _ o) (270)
27y

where U(7) is the Heaviside step function: U(7) = 0, 7 < 0; U(7) = 1, 7 > 0. Hence
we have: . 1
C(r)=C(0)e = with 7,=— (271)
271’1/[
For the GR-process, featuring the random count variable N, we can thus express the
variance ANZ for some time delay 7 following excitation or decay as an exponential

autocovariance according to:

|

Cn(r) = ANZe (272)

The associated power spectral density Sy(v) can now be obtained by applying the
Wiener-Khinchin theorem. Since we are dealing here with two independent random
processes, i.e. an excitation process followed by a decay process, in computing the
spectral noise power we incorporate a factor 2 in taking the integral of the autocovari-
ance over all physical delays 7. Subsequently we need to convert this one-sided spectral
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density to a double-sided spectral density (Sy, ) to accomodate the negative frequencies
and time delays used in Wiener-Khinchin theorem. Thus we have:

|

i _ 7l . oo— _ 7l .
Sy(v) =2 / ANZe ™ e 20 dr = Sy (v) = / ANZe 7 e 20vTgr  (273)
0 —00

Performing the Fourier transform in equation (273) results in:

_ 2,AN%? 29,77
1+ (2mvn)? 1+ (27vm)?

Say (V) (274)

As shown before, the value of the average current density |;| in the semiconductor equals
nq|vy| with n = N/V the charge carrier volume density, ¢ the elementary charge and ¥y
the drift velocity in the applied electric field. With a cross sectional area A we have a
total average current I, = A-|j| = A-(N,/V)q(d/7,) = ¢Ne/Tr = qge(7¢/ ) in which d
represents the distance between the electrodes of the semiconductor and 7, = d?/(uV)
the charge carrier transit time between the electrodes (with p the carrier mobility and
V the bias voltage). Substituting in (274) and multiplying Sy, (v) by (¢/7)? yields an
expression for the current spectral density of the GR noise:

Sa; = (%)2 Say (V) = 2qle (%) (W) (275)

The mean square GR current noise AI? follows from integration of Sy, over all frequen-
cies:

+0o0
- Ty dl/ ——5 Ty .
A = 21, (—) / W AP =dgl, <—>A _ with 276
¢ T/ I 1+ (2nvm)? ¢ Tir Ve W (276)
dv

Av, = the noise equivalent bandwidth within 0 < v < 0o

o\—é—

1+ (271’1/7'4)2

For low frequencies the (one-sided) current spectral power can be expressed as:

Ap
- Av,

S1(0) (277)

E
= 4¢G,I. [Ampere ? Hz '] with G, = <E> _

Ttr d
G, is the so-called noise gain. In case the semiconductor has uniform resistance and

an uniform electric field, the noise gain is proportional to this applied electric field.
The GR-current noise can then be expressed as (\/ AIZ)GR = 49G,1,Av., with
mn

Al 2) the rms-noise current, I, the average total current and Av, the noise equiv-
n
alent bandwidth.

Shot noise in the signal-photon limit The average number of charge carriers
generated by a radiation beam with an average monochromatic photon flux density F'(\)
( average spectral photon irradiance) at wavelength A equals Gn(\)F(X)A,., in which
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A, represents the active area of the photoconductor, n(\) the quantum efficiency for
photo-absorption and G the photoconductive gain. The average photocurrent E{I,,(¢)}
can therefore be expressed as:

E{Ln(t)} = Ln(t) = ¢Gn(A)F(A) Ape (278)

with ¢ the elementary charge. The frequency response can be expressed as (see equation
(269)):
1

Hoe2miY) = T,

(279)

where 7, is the charge carrier life time.

(VAE) = \uGTumAr. = 206 n(F (V) Ay, (280)

GRy,

with (\/ AIZ)G the rms-noise current, I,,(t) the average total photo-current, F'(\)

Ry
+00

the average radiant signal photon flux and Av. = [ dv/(1 + [27v7]?) the one-sided
0

noise equivalent bandwidth within the frequency range 0 < v < oco. Substituting Av,
by performing the integration over frequency we get:

(ﬁ)w _ .G (M)é (281)

Te

Finally, for the signal to noise ratio in the signal photon limit we obtain

_ Lpn (1) _ A1/
SNR = ((\/ﬁ)(}]{ph) (U(A)F()‘)Apc K) (282)

This last equation tells us that a high value for the frequency cutoff v, = 1/(277) leads
to a lower signal to noise for the photo-current; the reason for this is that the intrinsic
system noise is less filtered.

Shot noise in the background-photon limit The rms-noise in the photocurrent,
derived in the previous paragraph, dominates over thermal noise if the photoconductor
is sufficiently cooled.

From expression (281) for the rms-noise in the photocurrent (\/ AP)G we can also as-

ph

sess the spectral Noise Equivalent Power (NEP(\,v)) if we assume that this photocur-
rent arises from an average monochromatic background-photon flux density B(\) instead
of the average signal-photon flux density F'()\) considered above. This NEP(A,v) rep-
resents the so-called radiation Background Limited Performance (BLIP). Let us use the

relations:
AT2 1
NEP(A y):%:@ M ’ (283)
’ Rl.(\v) A\ (N7
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Figure 60: Typical detectivities for several photo-conductors. Figure taken from Dere-
niak and Crowe 198/.

and the BLIP normalised detectivity D*(A, v):

)= T4 (o0

2
= NEP(\») ~ 2he m) by substituting Av, = 1/(4m) (284)
Figure 60 shows the theoretical peak detectivity for n(A) = 1 as a function of wavelength,
assuming radiation Background Limited Performance(BLIP) arising from an omnidi-
rectional blackbody radiation field at 300 K integrated over the upper hemisphere of
180°. Also included in figure (60) are a number of common extrinsic photoconductors
and their corresponding operating temperatures. Detectivities of two types of ther-
mal detectors (bolometers) are displayed for comparison. The thermal detectors lack
the cut-off feature in wavelength due to the different detection principle, they show a
considerably lower value of D*(\, ) but cover a wider spectral band than the photo-
conductive devices.

10.4.4 Single photon detection: noise analysis

In observations where the individual information carriers are registered (photons, cosmic-
ray particles or neutrinos), the signal to noise ratio considerations are based on a sta-
tistical treatment of the data. This leads to expressions for the limiting sensitivity for
source detection depending on collecting area, exposure time and noise level. In what
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follows, statistical independence is assumed between subsequent events; the process
possesses no internal coherence and the stochastic nature of the data can therefore be
described by Poissonian statistics.

Consider a radiation beam, originating from a distant point source, with a photon flux
density n, (e.g. photons-m~2-s7!). Suppose this point source is embedded in uniformly
distributed background radiation noise with a photon intensity ny, (photons-m=2-s7*-sr™).
Furthermore, the quantum noise of the detector is given by ng4.; counts per unit detec-
tor area per unit time. If the telescope effective area equals Aeff, where the energy
dependent collecting area has been averaged over the energy bandwidth of the observa-
tion, the number of registered counts over an integration period 7, in one image pixel
equals:

N1 = ((ns + nbgAQ)Ae f + ndetApix)Tobs = (ns + nbgAQ + ndeté)AeffTobs (285)

in which A€ represents the solid angle subtended on the sky by the angular resolution
of the telescope and ¢ the ratio between the area of a single pixel on the face of the
image detector A,;; and A, sf- An adjacent pixel without the point source accumulates
in the same observing time:

Ny = (nbgAQ + ndeté)AeffTobs (286)

According to Poissonian statistics the fluctuations in N; and N, equal +/N; and /Ny
respectively. The SNR can now be defined as

Ny — Ny
VN1 + Ny

in which the signal strength is evaluated in terms of the magnitude of the statistical
fluctuation in the noise component (beware: not in relation to the absolute magnitude
of the noise component).

Consider two extreme cases:

SNR = (287)

e The source signal strongly dominates the noise, i.e. Ny < Nj.

In this case the SNR equals

SNR = \/Ny = \/nyAesfTops (288)

In terms of the limiting sensitivity, a minimum number of photons N,,;, is required
in order to be able to speak of a detection, for example 10 or 25. In those cases
the SNR equals 3 or 5.

The limiting sensitivity follows from

Nmin n
Ne . = — o (AppTops) * 289
Smin AeffTobs ( eff Obs) ( )
This is the best possible case. The detection is so-called signal-photon-noise lim-
ited. The limiting sensitivity improves linearly with the effective collecting area
and the integration time.
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e The source signal is drowned in the noise, i.e. Ny ~ Ny = N.

v F,(Wm?

The criterium for source detection can be formulated on the basis of a certain
level of confidence (minimal SNR) k. The limiting sensitivity now follows from

V2N

nsmin = k 1

AeffTobs
Substituting N = (ng + npg AQ + 1gerd) A Tops:

2(npg AQ + ngerd) - 1
s, =k 9= ~ (AerrTops
n min \} AeffTobs ( ff b ) 2

(290)

(291)

In this case the limiting sensitivity only improves with the square root of the

telescope collecting area and the integration time.

In the case nged < nyp AQY (detector noise negligible), the detection is said to be

background-photon-noise limited.
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Figure 61: Comparison of sensitivities of major (future) astronomical observing facil-
ittes.  Spectral energy distributions for 3C273, for an average QSO template, and for
the obscured star-forming galactic merger NGC 6240 are shown at a redshift of z=10.
Sensitivities assume 12-hour 1-o detections (SNR=1) for all instruments except for
the X-ray observatories XEUS/IXO and Simbol-X where an equivalent 5-0 detection
(SNR=5) in a 1 Megasecond exposure is assumed. Credit Astronet Report 2008.
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Note: implicitly the bandwidth of the observation also comes in when evaluating the

SNR. The values ng,ny, and ng., were defined as integral values over a certain pre-

determined energy bandwidth. For example, if an energy bandwidth e — ¢; = A€ is

considered, ny = [ ny(e) de = ng(e)Ae. Similarly, ny, = Mpg(€) A€ and nger = Nger(€) Ae.
A

Now the following ‘relations hold:

e signal-photon-noise limited: ns,.. (€) ~ (A Tops Ae) ™!

e background-photon-noise limited: ny, . (€) ~ (AeffTobsAe)*%
Figure 61 shows a comparison of limiting sensitivities, assuming realistic observing
times, for a number of current and planned major astronomical observing facilities,
both ground-based and space-based. Typical spectral energy distributions for AGNs
and a star-forming galactic merger, positioned at a redshift z=10, are included for ref-
erence.
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