Numerical Studies if Jet Driven Feedback in Clusters

- Sebastian Heinz & Brian Morsony, UW-Madison

Collaborators:
- Marcus Brüggen, IU Bremen
- Mateusz Ruszkowski, U-Michigan
Outline

- Jets in dynamic clusters
- Results
 - Multiple bubbles
 - AGN sphere of influence
 - Iron line studies with IXO
 - Turbulence signatures of jet activity
- XIM
Non-spherical clusters

- Initial conditions in jet simulations matter: spherically symmetric vs. dynamic clusters

- Clusters are anisotropic & dynamic

Springel et al. 2002
The dentist drill effect

- Scheuer 1974:
 - Lobe morphology requires jet wiggle (see also Begelman & Cioffi, 89)
 - Dynamical instabilities, e.g. 3C273
 - Hot spot - jet misalignment

- Modeled as:
 - Random walk of jets axis
 - Opening angle 20°
 - fast compared to dynamical time

Heinz, Brüggen, Young, & Levesque 2006
The VLA view of Cygnus A
The VLA view of Cygnus A
The VLA view of Cygnus A

- Simulated VLA movie of “Digital Cygnus A”:
 - Simulated in a realistic galaxy cluster (from cosmo. sim.)
 - 10^{46} ergs s$^{-1}$
 - 160 Myrs in 500 CPU days
 - Resolution: 170 pc

Heinz, Brüggen, Young, & Levesque 2006
Multiple cavities ≠ intermittency

- Dynamics in cluster core:
 - “Target” material mixed into jet path
 - New cavities generated after ~ free fall time
 - Cannot use multiple cavities to infer duty cycle!
Multiple cavities ≠ intermittency

- Dynamics in cluster core:
 - “Target” material mixed into jet path
 - New cavities generated after ~ free fall time
 - Cannot use multiple cavities to infer duty cycle!
Multiple cavities ≠ intermittency

- Dynamics in cluster core:
 - “Target” material mixed into jet path
 - New cavities generated after ~ free fall time
 - Cannot use multiple cavities to infer duty cycle!
Cluster weather: AGN sphere of influence

- Interaction with cluster weather
 - AGN impact limited to “sphere of influence”
 - Radius $R \sim P^{1/3}$
 - AGN excavates deeper, rather than further
Cluster weather: AGN sphere of influence

- Interaction with cluster weather
 - AGN impact limited to “sphere of influence”
 - Radius $R \sim P^{1/3}$
 - AGN excavates deeper, rather than further
Cluster weather: AGN sphere of influence

- Interaction with cluster weather
 - AGN impact limited to “sphere of influence”
 - Radius $R \sim P^{1/3}$
 - AGN excavates deeper, rather than further
Cluster weather: AGN sphere of influence

- Interaction with cluster weather
 - AGN impact limited to “sphere of influence”
 - Radius $R \sim P^{1/3}$
 - AGN excavates deeper, rather than further
Cluster weather: AGN sphere of influence

- Interaction with cluster weather
 - AGN impact limited to "sphere of influence"
 - Radius $R \sim P^{1/3}$
 - AGN excavates deeper, rather than further
“Sphere of influence”: Time after onset

- Excavated zone reaches asymptotic terminal size
“Sphere of influence”:
Jet duration

- 1e45 ergs/s, on for
 - 30 Myrs
 - 50 Myrs
 - Continuously
- Excavated zone stationary, just deeper
“Sphere of influence”: Jet power

- **Comparison:**
 - 1×10^{44} ergs/s for 30 Myrs
 - 1×10^{45} ergs/s for 30 Myrs
 - 1×10^{46} ergs/s for 30 Myrs

- **Excavated radius:**
 - $R \sim P^{1/3}$
Chandra legacy

- Imaging
 - Cavities
 - Sound waves
 - Shocks

- What are we missing?
 - Photons
 - Spectral resolution
Chandra legacy

- Imaging
 - Cavities
 - Sound waves
 - Shocks

- What are we missing?
 - Photons
 - Spectral resolution
IXO - the International X-ray Observatory

- An X-ray integral field spectrograph with
 - 5” angular resolution
 - ~ 5’ field of view
 - spectral resolution of 2500 @ 6.4 keV
 - ~ 50 x area of ACIS

- Cavity kinematics
 - Ages (no more t_{sonic}, t_{buoyant}, t_{whatever})
 - Unambiguous cavity and jet powers
IXO - the International X-ray Observatory

- An X-ray integral field spectrograph with
 - 5” angular resolution
 - ~ 5’ field of view
 - spectral resolution of 2500 @ 6.4 keV
 - ~ 50 x area of ACIS

- Cavity kinematics
 - Ages (no more t_{sonic}, t_{buoyant}, t_{whatever})
 - Unambiguous cavity and jet powers
A simulation is useless in vacuum, needs connection to observations

1. Take a 3D simulation of thermal gas

2. Simulate the spectrum emitted by the gas

3. "Observe" it with an X-ray telescope
A simulation is useless in vacuum, needs connection to observations

1. Take a 3D simulation of thermal gas

2. Simulate the spectrum emitted by the gas

3. “Observe” it with an X-ray telescope
A simulation is useless in vacuum, needs connection to observations

1. Take a 3D simulation of thermal gas
2. Simulate the spectrum emitted by the gas
3. “Observe” it with an X-ray telescope
XIM: A virtual X-ray observatory for numerical simulations

1. 3D Input: $n_e n_H$, T, velocity, metallicity, filling factor
2. Thermal emission (APEC + thermal broadening)
3. Line-of-sight integration along arbitrary vector
4. Telescope PSF convolution (IXO & Chandra)
5. Convolution with instrument response
6. Add blank sky & instrument background
7. Add Poisson noise
8. Optional: Interface with MARX (Chandra only)
9. Output FITS events file, pha file

Download: http://www.astro.wisc.edu/~heinzs/XIM

Heinz & Brüggen 2009, submitted
The IXO view of Cygnus A

- Taylored jet simulation
- Reproduces Chandra observation
- Fe XXV and XXVI Kα line
- Line structure reflects expansion of cavity.
- Measure expansion velocity directly
- Measure power directly

F II R

Fe XXV Fe XXVI

Friday, August 13, 2010
The IXO view of Cygnus A

- Taylored jet simulation
- Reproduces Chandra observation
- Fe XXV and XXVI Kα line
- Line structure reflects expansion of cavity.
- Measure expansion velocity directly
- Measure power directly
The IXO view of Hydra A

Wise et al. 07

Wise et al. 07
Jet-induced turbulence

- Cluster background turbulence:
 - inner: $v_{1\sigma} \sim 200$ km/s
 - outer: $v_{1\sigma} \sim 300$ km/s
- Jets generate strong turbulence
- Detectable with ASTRO-H, IXO
Summary

- Multiple cavities ≠ intermittency
- Sphere of influence of Jet on cluster limited by dynamics, with $R \sim P^{1/3}$
- IXO cavity spectra will show clear kinematic signatures which will allow us to measure ages directly
- Download XIM at http://www.astro.wisc.edu/~heinzs/XIM to generate virtual IXO & Chandra observations from numerical simulations